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Preface 
 

Finite Element Analysis (FEA) was developed as a numerical method of stress 
analysis, but now it has been extended as a general method of solution to many 
complex engineering and physical science problems. In the past few decades, the FEA 
has been developed into a key indispensable technology in the modeling and 
simulation of various engineering systems. In the development of an advanced 
engineering system, engineers have to go through a very rigorous process of 
modeling, simulation, visualization, analysis, designing, prototyping, testing, and 
finally, fabrication/construction. As such, techniques related to modeling and 
simulation in a rapid and effective way play an increasingly important role in building 
advanced engineering systems, and therefore the application of the FEA has 
multiplied rapidly.  

This book reports on the state of the art research and development findings on this 
very broad matter through original and innovative research studies exhibiting various 
investigation directions. The book has been grouped into three major domains: 
Biomedical engineering, electrical engineering, civil engineering. It is meant to provide 
a small but valuable sample of contemporary research activities around the world in 
this field and it is expected to be useful to a large number of researchers. Through its 
17 chapters the reader will have access to works related to Dental Medicine, Implants, 
Sandwich Panels, Tunnel excavation, Stiffener run-outs, Tubular Footbridges, DC 
circuit breaker, Permanent Magnet Motors, MEMS and several other exciting topics.  

The present book is a result of contributions of experts from international scientific 
community working in different aspects of Finite Element Analysis. The introductions, 
data, and references in this book will help the readers know more about this topic and 
help them explore this exciting and fast-evolving field. The text is addressed not only 
to researchers, but also to professional engineers, students and other experts in a 
variety of disciplines, both academic and industrial seeking to gain a better 
understanding of what has been done in the field recently, and what kind of open 
problems are in this area. It has been written at a level suitable for the use in a 
graduate course on applications of finite element modeling and analysis (Electrical, 
civil and biomedical engineering studies, for instance). 
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Finite Element Analysis in Dental Medicine 
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http://dx.doi.org/10.5772/50038 

1. Introduction 

Studying dental structures and surrounding tissues in the oral cavity presents the basis for 
understanding the occurrence of pathological process and enables the correct approach and 
treatment. Oral rehabilitation is inherently difficult, due to the functional and parafunctional 
forces within the mouth that result in extremely complex structural responses by the oral 
tissue [1]. The success of restorative materials depends on their properties to withstand and 
resist occlusal forces and successfully support the remaining oral structure [2]. Studies 
examining the biomechanical behavior of oral structures require sophisticated simulations 
of the fundaments of the stomatognathic system [3]. 

There were numerous ways and attempts of experimental research, but due to the 
complexity of dental structures, composed of various tissue materials mechanically and 
chemically interconnected, and due to complex tooth morphology and surrounding 
structures, these attempts failed to obtain precise and reliable results. Researches have used 
photoelastic methods, computer simulation methods and finite element analysis to conduct 
stress analyses of sound and restored teeth in order to predict their fracture resistance. 
Conventional methods such as photoelasticity and the strain-gauge methods are inadequate 
to predict reliable stress distribution in the tooth [4]. The use of traditional load-to-failure 
bench-top testing is unable to recreate the failure mechanisms seen clinically; hence the use 
of FEA is gaining popularity because of its ability to accurately asses the complex 
biomechanical behavior of irregular prosthetic structures and heterogeneous material in a 
non-destructive, repeatable manner [5]. 

2. Finite element analysis 

Finite element analysis (FEA) is a numerical method of analyzing stresses and deformations 
in structures which originated from the need for solving complex structural problems in 
civil and aeronautical engineering. In order to achieve this goal, the structures are broken 
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down into many small simple segments or elements, each with specific physical properties 
(figure 1). Than, an operator uses a computer program in order to obtain a model of stresses 
produced by various loads [6,7]. A major advantage of finite element analysis (FEA) is its 
ability to solve complex biomechanical problems for witch other study methods are 
inadequate. Stress, strain and some other qualities can be calculated in every point 
throughout the structure. FEA is also being used as part of the design process to simulate 
possible structure failure, as a mean to reduce the need for making prototypes, and reducing 
a need for performing actual experiments, that are usually expensive and time-consuming 
[8]. This method allows researches to overcome some ethical and methodological limitations 
and enables them to verify how the stresses are transferred throughout the materials [9]. 

In the area of dentistry, FEA has been used to simulate the bone remodeling process, to study 
internal stresses in teeth and different dental materials, and to optimize the shape of 
restorations. Because of the large inherent variations in biological material properties and 
anatomy, mechanical testing involving biomaterials usually require a large number of 
samples. With FEA the necessity of traditional specimens can be avoided, and by using a 
mathematical model it also eliminates the need for large number of experimental teeth. It has 
been used to represent simulated tooth mechanical behavior under occlusal loads in details [8]. 

 
Figure 1. Elements of an FEA model. 
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2.1. Finite element model 

The decision to use 2D or 3D models to investigate biomechanical behavior of complex 
structures, by FEA, depends on many inter-related factors, such as the complexity of the 
geometry, material, properties, mode of analysis, etc. Although 2D models are simpler, 
easier to build and less time consuming, they do not represent the complexity of the real 
problem. 2D model might be considered when studying the qualitative biomechanical 
behavior, but for the quantitative stress analysis the 2D models overestimate stress 
magnitudes and do not represent the realistic model. 3D model may provide more reliable 
data that more accurately represent non-linear and anisotropic materials. 3D models should 
be carefully created with appropriate mesh density [3]. Khera et al. were the pioneers in the 
utilization of 3D models. The models were obtained from sectional images of human 
mandible, but this is no longer required due to the use of a computerized tomography (CT) 
[10].  

The 3D geometry of the tooth (figure 2) can be reconstructed in two ways. The old 
traditional method consists of embedding the tooth in red epoxy and sectioning it 
perpendicularly to the long axis by a precise saw (figure 3). Each section is than digitally 
photographed and the 3D geometry of the tooth is being constructed from these cross-
sections using specialized computer program. The solid model is transferred into a finite 
element analysis program, where a 3D mesh is being created, and subsequently the stress 
distribution analysis performed (figure 4) [4, 25].  

 
Figure 2. Natural tooth 
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Figure 3. Embedded tooth in red epoxy. 

 
Figure 4. 3D model of the sound tooth 

The second, latest method of reconstructing a 3D tooth model is performed with the aid of 
CT. It facilitates and speeds up the acquisition and produces more accurate model. With this 
method the surrounding soft structures can be also included, larger areas scanned and 
reconstructed, while the structures itself still remain in the patient mouth. The next big 
advantage of CT model rendering consists of the possibility to scan the same structure 
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before and after the performed therapy procedures, and periodical follow-ups of the therapy 
success. Technologies such as micro-CT scanning open up the possibility for complex 3D 
modeling [11]. However, the process of going from image to mesh involves a number of 
processing steps, each with potential geometric errors [12]. 

2.2. Interpretation of the FEA results 

The results obtained from a FEA on the restored system contain information about the stress 
distribution of each component of the restoration, instead of only a single value of failure 
load typical of in vitro results. A correct interpretation of FEA results should be based on the 
stresses and strength of each component of the system. To obtain accurate conclusions from 
these interpretations, three conditions must be fulfilled. First, FEA should adequately 
represent the real stress values; second, strength of the different materials must be known; 
third, an adequate failure criterion must be used [13].  

It is not possible to implement the results from FEA directly into a clinical situation, but it 
has to design the model in such a way that is mimics the real situation as closely as possible. 
FEA analysis must be interpreted with a certain amount of caution. Most of the researches 
modeled dental structures as isotropic and not othotropic. The finite element model 
represents a static situation at the moment of load application and not an actual clinical 
situation. In reality, the loading of the structure is more dynamic and cyclic. The materials of 
the various tooth structures were assumed to be isotropic, homogenous and elastic, and that 
they remain such under applied loads. More precise measurements can be obtained if the 
material properties are set as anizotrophic and non-homogeneous, but such setup requires 
much more complex mathematical calculations. It is better to use a non-linear elastic-plastic 
material model than the linear models that are used in most FEA studies [14]. 

The values from finite element analysis are presented as maximum and minimum principal 
stresses. Most of the previously published studies have analyzed the results from Von Mises 
maximal stress [15-19]. This is probably associated to the fact that this is the normal criterion 
for the most engineering analyses, which usually deal with ductile materials such as steel 
and aluminum [13]. It is known that the Von Mises criterion is only valid for the ductile 
materials with equal compressive or tensile strength, but materials exhibiting brittle 
behavior such as ceramics, cements or resin composites presents reported values of 
compressive strength significantly greater than tensile strength [20]. Positive and negative 
values indicate that the corresponding regions are subjected to tensile or compressive 
stresses (figure 5) [21].  

The response of the structure is different if asymmetrical loading is considered. When the 
tooth is compressively loaded, displacements do not appear to be significant because of the 
rather large compressive yield strength. The situation is different if the asymmetrical 
loading is considered, when the tensile stress occurs. The dental tissues are more resilient to 
compressive than tensile forces. Any occlusal contact that can create tensile stress, also 
creates the possibility to create a lesion in tooth structure. When lateral loads are applied, 
tensile stresses generated in the areas are of higher values than when vertical loads are 
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applied onto the same areas. The increase in the load does not cause a change in the overall 
stress pattern, but increases the values. The loading, that the tooth is subjected to, may cause 
cracks in the tooth, but not necessarily its immediate failure. Most of the failures of dental 
materials used for tooth restorations are caused by tensile stress. Precise occlusal 
adjustments of teeth occlusal surfaces should be performed to prevent such events. The 
average chewing force varies between 11 and 150 N, whereas force peaks are 200N in the 
anterior, 350N in the posterior and 1000N with bruxism [22]. 

 
Figure 5. FEA model of a restored apicotomysed tooth 

3. Materials and types of reconstructions in dental medicine 

The use of different materials for restoration substantially modifies the stress distribution of 
an originally healthy tooth. The difference between the elastic modulus of tooth and 
restorative material may be a source of stress in the dental structures. If the stress exceeds the 
yield strength of the materials, fracture of the restorative materials or the tooth may occur. 
The occlusal force leaning against the tooth or dental implant axis causes the structure to 
bend, and the higher tensile stresses are produced. The oblique force loading on the dental 
structure is the major cause of dental damage and the further attention should be paid to the 
importance of the occlusal adjustment [4, 7, 25].  

The way the chewing force application is much more important than the dentine and the 
enamel properties, or even the properties of the restorative materials. The consequences of 
the same chewing force for different teeth also need to be highlighted because structural 
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changes can occur depending upon the magnitude of the force, which can affect the tooth 
morphology in extreme (premature contacts) or repetitive cases (fatigue) [11]. 

3.1. Natural tooth  

The properties of tooth are not homogenous, but are anisptropic like dentin (due to its 
capillary morphological structure) or enamel (due to its prismatic structure) [23]. Various 
studies have shown that the failure was confined mostly to the occlusal walls and margins, 
and was usually seen on the buccal surfaces of lower molars and premolars (figure 6 and 7) 
[24,25]. Excursive mandibular movements place the buccal cusps in tension or in 
compression and open up the occlusal margins (figure 8). Enamel near the cemento-enamel 
junction is highly stressed because the reactive forces have to flow into and through this thin 
wedge of tissue for it to be transmitted into the root of the tooth and subsequently into the 
supporting alveolus bone [2]. This is the reason why the restorations inserted into the 
cervical region can be subjected to high compressive stresses even though these areas are 
not susceptible to direct contact during mastication [26,4]. 

 
Figure 6. FEA analysis in sound tooth in normal occlusion looking from outside 
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Figure 7. FEA analysis of the sound tooth (cross section) 

3.2. Dental restorations 

Many detrimental effects during restorative procedures are reported to be produced because 
of lack of understanding of biomechanical principles underlying treatment. Biomechanical 
studies are crucial in order to highlight the behavior of restored tooth to functional forces [27]. 

It was earlier thought that the only forces that dislodge the tooth restorations were the 
pulling forces of sticky foods, while little thought was given to the biomechanics of the 
tooth structure. Later, it was seen that forces applied on the occlusal surface of the tooth 
could induce stresses in a restoration remote from the point of application of the force [2]. 
Heymann suggested that two mechanisms operate and cause failure. One is the lateral 
excursive movements resulting in lateral cuspal movements which generate tensile 
stresses along tooth restoration interface, and the other one are heavy forces in centric 
occlusion which cause vertical deformation on the tooth leading to compressive and shear 
stresses [24]. The presence of an occlusal restoration weakens the tooth structure and 
increases the stresses. Especially the depth is more critical than the width [26,28,29]. This 
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restoration may also influence the retention of class V restoration because of the tooth 
flexure theory. Breakdown of the margins of class V restorations may be the result of 
occlusal loading [2]. 

 
Figure 8. FEA analysis in the sound tooth in the case of malocclusion 

A growing interest in aesthetic dental restorations has led to the development of innovative 
materials for aesthetic restorations of teeth. These new systems have focused on physical 
properties, such as modulus of elasticity, that are more closely matched to natural tissue, in 
order to decrease stress concentrations within the dental structure and reduce the incidence 
of failure. The development of adhesives has created a need to measure the adhesive bond 
strength of restorative materials to mineralized tissue. Several methods for studying have 
been developed but FEA capable of quantifying the effect of each tested parameter on bond 
strength [30]. 

Composite occlusal restorations have been shown to reduce cuspal flexure compared to an 
occlusal amalgam restoration [26]. Composite resin in combination with the acid-etch 
technique and adhesive systems have been used for the restoration of tooth caries and 
cervical lesions that we commonly call „dental composite restoration“. Evaluation of 
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marginal integrity at the composite resin-tooth interface is required for clinically successful 
restorations. Polymerization contraction occurs during light curing and may cause marginal 
disintegration [31]. The maximum stresses due to the shrinkage of the cement layer may 
cause debonding of the cement layer. This debonding on one side will cause relaxation of 
stresses at the other side of the restoration and will cause (micro) leakage with all its 
detrimental effects [14]. 

The fracture load of the final restoration is the result of the combined effects of bonding 
between the underlying tooth, the ceramic restoration, and the resin composite cement. 
Clinical stress distribution in ceramic dental restorations may be quite complex. Several factors 
are associated with crack initiation and propagation, including the shape, microstructural no 
homogeneities, the size and distribution of surface flows, residual stresses, ceramic-cement 
interfacial features, thickness of restorations, different elastic modulus and the magnitude and 
orientation of the applied load. On the structural factors, the connector areas are the most 
influential in failure [22]. Traditional load-to–failure testing has proved irrelevant in predicting 
the clinical performance of ceramics, largely because they cannot recreate the failure 
mechanisms seen in clinical specimens [5]. The FEA was used to determine the optimal stress 
distribution in the ceramics bridges that would reduce the risk of connector fracture. The 
points of greater stress were found within, or near the connector [22]. 

The FEA demonstrated that with the use of an idealized inlay preparation form and an 
optimized bridge design emphasizing a broadening of the gingival embrasure, the forces 
derived from mastication can be adequately distributed to levels which are within the 
fracture strength of current ceramics [5]. Tensile stresses tend to be more critical than 
compressive stresses for ceramic materials. The strength of ceramic restorations is 
significantly affected by the presence of flows or other microscopic defects [32]. Tensile 
stress concentration at cementation surface of the ceramic layer was suggested to be the 
predominant factor controlling ceramic failure [33]. Fea showed lower tensile stress levels at 
the cementation surface than in the area under and between the load points, which could 
explain the occlusal to cervical direction of fracture seen in the fractographic analysis. 
Although the polymer crown had a higher fracture resistance than ceramics, a larger 
amount of the occlusal load was transferred through the tooth, resulting in catastrophic 
fracture of the tooth. This fracture behavior can limit the use of polymer crowns when 
compared to ceramic systems [32]. Molar crowns made of stiffer materials are less prone to 
debonding and crowns made of higher elastic modulus material protect the tooth structures 
from damage [23].  

Veneers used in restorative rehabilitations for anterior teeth are retained by the adhesive 
systems and resin cements. These restorations are mechanically not strong, because they are 
made up of a brittle material, but they have good retention due to the resin-dentine 
bonding. The remaining tooth tissue is the most important factor for the longevity of the 
veneers where the buccal, cervical region is the most critical region. Teeth totally recover 
their properties when veneers are placed as a partial enamel substitute. The use of ceramic 
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was a key element since the elasticity modulus of porcelains is matched well with enamel 
[11]. 

The widely used method for treatment of structurally weakened teeth is the post and core 
system. This system can be classified into two basic core system, metal posts and cores that 
are custom cast as a single piece, and two element designs composing a prefabricated post 
to which other materials core is subsequently adapted [34]. The difference between the 
elastic modulus of dentine and the post material may be a source of stress for root 
structures. Debonding of posts because of contraction stress of the cement was found as the 
most common mode of failure [27]. The effect of post design is also very important for 
dentinal stress distribution since the placement of a post can create stresses that lead to root 
fracture (figure 9) [1]. Increased intracanal stresses below the level of crestal bone would 
explain the higher incidence of deep root fractures in teeth restored with post-retained 
crowns Horizontal loads generate more dentinal stress than vertical loads. Shorter posts are 
associated with more dentinal stress concentration around the post apex. Consequently, 
extending the apical post beyond the level of alveolar bone is essential to avoid stress 
concentration in the region of the post apex. However, very long posts are associated with 
higher intracanal stress values. A higher amount of radicular dentin around the post is 
important in order to reduce dentinal stress concentration within the root [35]. The use of 
post materials conflicts with the mechanical resistance of teeth because of mismatch in the 
stiffness with the residual dental structure [36]. Many studies have shown that fiberglass 
posts give better biomechanical performance. Titanium posts concentrate stress close to the 
post-cement interface, promoting weakness of restored tooth. Akkayan [37] observed that 
the fractures occurring with the use of fiberglass and quartz posts systems could be 
repaired, whereas this was not the case with zirconium and titanium posts. Thus, fiberglass 
post can be considered a very good choice because they offer good biomechanical 
performance, provide excellent aesthetics, and exhibit good adhesion to cementing agents 
[38]. 

Clinicians generally agree that NiTi rotary files have good properties to produce desirable 
tapered root canal forms, but also have a risk of fracture during instrumentation. These 
instruments have been developed to overcome the rigidity of stainless steel instruments 
[39]. Design of an instrument is the main factor in their mechanical behavior. Cyclic fatigue, 
which is a failure process associated with repetitive stressing, and torsion have been 
reported as dominant factors in file fracture [40]. 

With the application of adhesive technology to endodontics, the term monoblock has 
become familiar. Monoblock units can be created in a root canal system either by adhesive 
root sealers in combination with a bondable root filling material or adhesive post systems. 
The concept of creating mechanically homogenous units within the root dentine is excellent 
in theory, but accomplishing these ideal monoblock in the canal space is challenging 
because bonding to dentine is compromised by volumetric changes in resin-based materials, 
high cavity configuration factors, debris on canal walls, and differences in regional bond 
strengths [27]. 
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Figure 9. 3D modeling of post and core system. 

3.3. Dental implants and anchorage systems for tooth movements and bone 
fracture 

Dental implants are widely used to replace decayed teeth or to support prostheses. The 
failure is associated with bone loss around an implant neck. Bone loss can be activated by 
excessive implant loading, as by bacterial infection or trauma [41]. Mechanical stress can have 
positive and negative consequences for bone tissue and for maintaining osseointegration of 
an oral implant [9]. The prognosis for stress concentration at the bone-implant interface is of 
the utmost importance in dental implant research [41]. FEA has been widely used in the field 
of oral implantology to estimate peri-implant stress and strain [42]. The relation between 
implant design and load distribution at implant-bone interface is important in the search for 
optimal implant configuration with minimum stress peaks. Another significant factor is bone 
quality, in mechanical terms; this is determined by bone strength. Increase in implant length 
and diameter leads to reduction of stress magnitudes within the cortical bone [41]. FEA study 
shows that non-submerged implants showed higher stress values in the peri-implant bone 
than submerged ones and the use of soft liner materials considerably reduces the stress levels 
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in the peri-impant bone interfaces. Different heights and the use of soft liners were relevant in 
the stress distribution to the bone adjacent to the implants. Better distribution of the stresses 
will provide a more predictable osseointegration [9]. 

Prosthesis retention remains a much debated topic in the implant literature. Clinical studies 
comparing cement- and screw- retained implant restorations reveal no differences in 
outcomes. There is evidence from laboratory and FEA studies that implants with an 
internal-type connection exhibit better stress distribution with off-axis loading [43]. The 
combined use of implants and teeth has been questioned because of the differences of 
mobility between the abutments. Several authors have concluded that the tooth-implant 
bond does not have a negative influence on the marginal bone and soft tissues, but special 
care must be taken in planning in order to compensate for the differences in biomechanical 
responses between the implant and the tooth [44]. 

The biomechanical background of orthodontic tooth movement has been explored by many 
authors, and orthodontic movement principally depends on stress and strain in periodontal 
ligament (PDL). PDL is a thin connective tissue between the root and bone and play a key 
role in tooth mobility [12]. Accurate FEA model creation of a tooth and PDL is possible due 
to the use of micro-CT. Anchorage control in orthodontic treatment is an important factor in 
treatments outcome. Miniscrews and miniplates are being widely used because of their 
small size and superiority over endosseous implants due to the fact that they can be 
immediately loaded. Miniplates have the same features with the plates used in maxillofacial 
surgery [45]. Good treatment results have been reported by using miniscrews for 
orthodontic anchorage in various malocclusions, but major problem is their high failure rate. 
Unlike dental implants, mechanical interdigitation at the cortical bone rather than 
osseointegration is required for the stability of miniscrews. The placement angle, the type of 
miniscrews, and the direction of forces significantly affect the distribution area and the 
amount of stress [46]. Inadequate design and non-homogenous force distribution can cause 
stress directly effecting on the screws and may impair screws stability. Mobile plates can 
irritate the surrounding tissue and may cause inflammation. The FEA study revealed that 
the new miniplates are highly efficient in reducing stress on the fixation screws [45]. 

Fractures of the mandibular angle are the most problematic in the facial region because of 
the high frequency of complications and difficult surgical access to the site [47]. Infection 
and nonunion are commonly reported after rigid internal fixation of these fractures [48]. The 
stress analyses obtained from FEA modeling can provide information regarding interactions 
between hardware and bone during normal patient functioning. A single tension band on 
the superior borders provided more angle fracture stability than a single bicortical plate 
placed inferiorly. This results support the use of the single tension band configuration as a 
less invasive fixation approach to fractures [47]. 

4. General guidelines 

The results of the finite element analysis must be interpreted with a certain amount of 
caution. Most of the researches modeled dental structures as isotropic and not othotropic. 
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The finite element model represented a static situation at the moment of load application 
and not an actual clinical situation. In reality, the loading of the structure is more dynamic 
and cyclic. More precise measurements could be obtained if the material properties are set 
as anisotropic and non-homogeneous, but such setup requires much more complex 
mathematical calculations. 

To obtain better understanding of the tooth lesions, which is important for the clinical 
treatment and restoration of damage, analyses of stress distribution in the oral cavity under 
various loading condition are highly desirable. FEA is a valuable tool for investigation of 
stress distribution within various types of reconstructions and prosthodontic appliances in 
dental medicine.  

The dental profession is influenced by various sources of information, which may be 
considered as “evidence-based” (controlled clinical studies) and “expert opinion”. A 
realistic approach is to identify the strengths and weaknesses of the available clinical data 
and combine it with clinical experience [43]. Most researchers in FEA assumed that all 
materials used were homogenous, isotropic and linearly elastic. However, this assumption 
does not reflect the exact situation. The periodontal ligament has nonlinear mechanical 
properties and the bone is inhomogeneous [9,35]. The 3D analysis permits high efficiency 
when the biomechanical behavior of the structure needs to be evaluated under different 
loading conditions. In the last four decades many studies have shown how the Finite 
Element Analysis applied to dental mechanics has become a popular numerical method to 
investigate the critical aspects related to stress distribution. The use of more detailed 3D 
models could be helpful in understanding critical problems related to the restorative 
material choice and optimal application procedures. Improved computer and modeling 
techniques render the FEA a very reliable and accurate approach in biomechanical 
applications [9].  

The results from FEA confirm the concept that the interfaces of materials with different 
module of elasticity represent the weak point of restorative systems. Restorations with 
material having a similar elastic modulus to tooth can save and strengthen the remaining 
tooth structure [27]. Combining fatigue experiments with FEA may eliminate, or at least 
minimize, experimental limitations by correlating fatigue failure to stress instead of specific 
testing configuration. 

5. Conclusions 

There are numerous ways and attempts of experimental research, but due to complexity of 
dental structures, composed of various tissue materials mechanically and chemically 
interconnected, and due to complex tooth morphology and surrounding structures, most of 
these attempts fail to present precise and reliable results.  

The 3D analysis permits high efficiency when the biomechanical behavior of the structure 
should be evaluated under different loading conditions. In the biomedical fields, the FEA is 
an important tool since it can avoid the necessity of traditional specimens, and by using a 



 
Finite Element Analysis in Dental Medicine 17 

mathematical model it eliminates the need of large number of teeth. The use of more detailed 
3D models is helpful in understand critical problems related to the restorative material choice 
and optimal application procedures. Improved computer and modeling techniques render 
the FEA a very reliable and accurate approach in biomechanical applications.  

When the tooth is compressively loaded, displacements do not appear to be significant 
because of its rather large compressive yield strength. The situation is different when 
asymmetrical loading is considered and tensile stress occurs. The dental tissues are more 
resilient to compressive than tensile forces. Any occlusal contact that can create tensile 
stress, also creates the possibility to create a lesion in tooth structure. Most of the failures of 
dental materials used for tooth restorations are caused by tensile stress. Precise occlusal 
adjustments of teeth occlusal surfaces should be performed to prevent such events. The 
difference between the elastic modulus of tooth and restorative material may be a source of 
stress in the dental structures. If the stress exceeds the yield strength of the materials, 
fracture of the restorative materials or the tooth may occur.  

The FEA helps to improve preparation designs, indicates the right material or combination 
of materials to be used in various load and stress conditions in order to reduce material 
and/or tooth failure in clinical practice. 
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1. Introduction 

Since Brånemark’s discovery, dental implants have become the most common restorative 
technique for the rehabilitation of edentulism. Many factors can impact the survival of 
implant-supported restorations. The most important factor for determining the long-term 
success of osseointegration is the state of the peri-implant bone [1-3]. Ideal biomechanical 
conditions directly affect bone remodeling and help to maintain the integrity of non-living 
structures such as the implant, abutment, and superstructures (Figures 1-7). Oral dental 
implant interventions involving surgical and restorative procedures for the rehabilitation of 
various causes of edentulism are associated with several risks. In particular, mechanical and 
technical risks plays a major role in implant dentistry, resulting in increased rates of repairs, 
unnecessary costs and lost time, and even complications that may not be easily corrected 
(Figures 8-10) [4-7]. Therefore, the potential mechanical and technical risks of failure or 
associated complications need to be evaluated before undertaking such interventions, since 
the application of necessary precautions may improve the survival of implant-supported 
restorations. Consequently, the number of biomechanical studies in the field of implant 
dentistry has dramatically increased in an effort to reduce failure rates.  

Several methods based on photoelastic, strain-gauge, and finite element analysis (FEA)-
based studies have been used to investigate stress in the peri-implant region and in the 
components of implant-supported restorations [8-11]. FEA is a numerical stress analysis 
technique that is widely used to assess engineering and biomechanical problems before they 
occur [12,13]. A finite element model is constructed by dividing solid objects into several 
elements that are connected at a common nodal point. Each element is assigned appropriate 
material properties corresponding to the properties of the object being modeled. The first 
step is to subdivide the complex object geometry into a suitable set of smaller ‘elements’ of 
‘finite’ dimensions. When combined with the ‘mesh’ model of the investigated structures, 
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each element can adopt a specific geometric shape (i.e., triangle, square, tetrahedron, etc.) 
with a specific internal strain function. Using these functions and the actual geometry of the 
element, the equilibrium equations between the external forces acting on the element and 
the displacement occuring at each node can be determined [9]. 

 
 
 

 
 
 

Figure 1. Missing molar in the mandible, to be treated with a dental implant-supported restoration 

In implant dentistry literature, commonly used materials in FEA studies can be classified as 
either implant, peri-implant bone (cortical and cancellous bone), and restoration (Figure 11). 
This method allows application of simulated forces at specific points in the system and 
stress analysis in the peri-implant region and surrounding structures. 2-D and 3-D models 
can be created and models for every treatment alternative can be explored. However, 2-D 
models cannot simulate the behavior of 3-D structures as realistically as 3-D models, so most 
recent studies have focused on 3-D modeling [14-17].  
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Figure 2. After flap elevation, the cortical bone is visible 

 
Figure 3. Dental implant with an abutment to be placed in the ridge created by the missing molar 
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Figure 4. Implant is placed in the ridge 

 
Figure 5. Occlusal view of the implant after 2 months of healing 
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Figure 6. Abutment is prepared and attached to the implant 

 
Figure 7. Porcelain-fused metal implant-supported restoration in use with optimum treatment planning 
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Figure 8. Intraoral picture of a broken implant due to excessive loading after 1 year of use 

 
Figure 9. Severe bone resorption after 2 years of loading; implant and superstructure have no 
mechanical failure, but peri-implant bone could not resist excessive loading (biomechanical failure 
because of improper occlusal adjustment) 



 
Application of Finite Element Analysis in Implant Dentistry 27 

 
Figure 10. Severe bone defect is seen after implant removal; advanced bone regeneration techniques are 
needed to replace the implant 

 
Figure 11. Modeling of bone, implant, abutment, and restoration 
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2. Modelization of living structure (bone) 

To improve the quality of FEA research, strict attention should be paid to the modelization 
procedure as one of the most important part of FEA studies. The features of the model 
should resemble the physical properties of the actual structure as closely as possible, with 
respect to dimension and material properties. The most difficult and complex part of the 
modelization process involves capturing the detailed properties of living structures. 
Therefore, in general, specifications drawn from chapters of a detailed anatomy book or 
from tomographic scans of a jaw from a cadaveric human specimen can be used for the 
modeling procedure. Volumetric data obtained from tomography devices or magnetic 
resonance imaging are digitally reconstructed [18,19]. Then, the material properties applied 
to the elements can be varied according to the modeling requirements of a particular 
situation. Computed tomography offers another advantage for realistic modeling in not only 
the development of anatomic structures, but also the inclusion of material properties 
according to different bone density values [20,21]. In some studies, the bone is totally or 
partially modeled as a simple rectangle, elipsoid, or U-shape [18]. In detailed studies, 
especially with data obtained from scanners, bone can be modeled in a very realistical 
manner; however, this increased level of geometric detail will result in increased working 
and computing time. According to the treatment alternatives being investigated, cortical 
bone can be layered in milimeters or can be neglected altogether in order to simulate weak 
bone properties similar to those found in the posterior maxilla (Figure 12). Bone properties 
related to density can be calibrated to range from very soft to dense bone, according to the 
individual research protocol. If only a specific area and/or condition of the mandible or 
maxilla is being investigated, there is no need to visualize and construct a model of entire 
jaw. Limiting the scope or features of the model will distinctly decrease the working time 
and costs, as previously discussed. A region of interest can be extracted using a number of 
techniques, such as a Boolean process (Figures 13-15), and any implant design can be 
adopted for the study. Regions of interest may change according to the study protocol. 
Portions of the mandible or maxilla, maxillary sinus region, and temporomandibular joint 
are the most common anatomical areas used in studies related to implantology. In the 
existing literature 2-D FEA bone models are generally simplified as a rectangular shape [14]. 
However, recent studies have used 3-D bone modeling to better represent the realistic 
anatomy of these complex structures [22-24]. 

In a previous FEA study, the human mandible model was based on a cadaveric mandible 
obtained from the anatomy department [25]. The edentulous cadaver mandible was scanned 
using a dental volumetric computed tomography device (ILUMA, Orthocad, CBCT scanner, 
3M ESPE, St. Paul, MN, USA) (Figure 16). Volumetric data were reconstructed in 0.2 mm 
thick sections. The mandibular height and width were at least 10 mm and 5 mm, 
respectively. More detailed anatomic representations could be created in future studies 
through the use of computed tomography scanners that can slice objects into thinner 
sections, but this may increase the working time and development cost of the final finite 
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element model (FEM). In the study mentioned above, sections were digitized into the 
DICOM 3.0 format and visualized using 3-D Doctor software (Able Software Corp., 
Lexington, MA, USA). Cortical bone of 2 mm uniform thickness, and cancellous bone were 
also modeled (Figure 17). In this study, cortical and cancellous bone model components 
were considered homogenous. However, in fact, cancellous bone in particular has widely 
variable density properties. The non-uniform nature of the density of this anatomic 
structure may affect the magnitude and distribution of stress concentration after loading. 
These simplifications are common in studies that employ FEA and are aimed at limiting the 
computing difficulties associated with performance of these studies [18,26,27]. To develop 
more realistic models of living structures, future studies may include variable density 
properties obtained from bone density values measured in Hounsfield Units or from other 
advanced data obtained from computed tomography scans performed with individual 
patients (Figure 18) [28-30]. 

 
Figure 12. Cortical thickness of the posterior maxilla is neglected; only cancellous bone properties are 
modeled 
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Figure 13. Mandible is modeled and region of interest is selected 

 
Figure 14. Region of interest is extracted by Boolean process 
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Figure 15. Part of the mandible modeled with superstructure, implant, and surrounding bone 

 
Figure 16. The edentulous mandible obtained from a cadaver was scanned using a dental volumetric 
tomography device 
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Figure 17. Volumetric data were reconstructed in 0.2 mm thick sections 

 
Figure 18. Bone density values can be measured according to gray scale using advanced 3-D 
radiographic techniques 
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3. Modelization of non-living structure (materials) 

Non-living mechanical structures such as implants, abutments, and restorations can be 
simulated in detail and can substantially influence the calculated stress and strain values, 
similar to living structures. These materials can be digitally modeled in FEA studies using 
previously determined isotropic, transversely isotropic, orthotropic, and/or anisotropic 
properties [31]. In an isotropic material, the relevant material properties are the same in 
all directions, resulting in only 2 independent material constants, such as Young’s 
modulus and Poisson’s ratio [9,13,31]. Young's modulus (MPa), also known as the tensile 
modulus, is a quantity used to characterize materials and is a measure of the stiffness of an 
elastic material. Young’s modulus is also called the elastic modulus or modulus of 
elasticity, because Young's modulus is the most commonly used elastic modulus 
[9,13,32,33]. When a sample object is stretched, Poisson’s ratio is the ratio of the 
contraction or transverse strain (perpendicular to the applied load), to the extension or 
axial strain (in the direction of the applied load). When a material is compressed in 1 
direction, it tends to expand in the other 2 directions perpendicular to the direction of 
compression. This phenomenon is called the Poisson effect. Poisson's ratio is a measure of 
the Poisson effect [9,13,32,33].   

An anisotropic material has material properties that vary by direction [31]. Isotropic 
material properties are used in most FEA studies related to implant dentistry [18,25,34]. 
For instance, the material properties of living bone are anisotropic, and inhomogeneous. 
These properties of real bone greatly affect stress and strain patterns. In addition, bone 
density may differ among various regions of the same jaw and areas of differing densities 
may only be separated by milimeters. For simplification and to overcome computing 
difficulties, in most cases, the materials are modeled as homogenous, isotropic, and 
linearly elastic  [35-39]. However, some studies have modeled the bone block using 
anisotropic properties (i.e., the material properties differ with respect to direction) [26]. 
The material properties of both living and non-living structures are chosen in accordance 
with the goal of the modeling exercise. 

In some studies, implants are modeled using a screw design but without threads (Figure 
19). This may simplify the computing process, but does not reflect the reality of implant 
geometry. If one or more study parameters are related to implant dimensions, there is 
little doubt that inclusion of implant threads in the model is quite important to the quality 
of the research. Most clinicians are interested in the magnitude and distribution of stress 
that may induce microdamage to the bone and result in crestal bone resorption; therefore, 
macro and micro threads are crucial in the modeling stage of an implant study. The 
implant thread design influences the induced bone stress around the implant, which 
contributes to crestal bone loss, and can jeopardize the maintenance of osseointegration 
[40-43]. In recent FEA studies, implant threads are modeled in detail (Figure 20,21). There 
are 2 ways to model implant and abutment materials. One way is to obtain all of the 
geometric information (e.g.,  length, diameter, macro-micro thread configuration) in 
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milimeters from the manufacturer. The second option is to scan implants and abutment 
materials and digitally reconstruct them. Efficient and realistic models can be obtained by 
using either option. In general, for the digital preparation of crown models, an anatomy 
atlas of the tooth can be used as a reference to calculate the form and both mesiodistal and 
buccolingual dimensions [44]. The prosthetic superstructure can be simulated according 
to various treatment protocols. Superstructure can also be modeled as a geometric figure, 
such as a simple rectangular shape, but this may interfere with the realism of the model  
(Figure 22).   

 
Figure 19. Implants are modeled without threads  

In a previous study, the crown model was simulated as porcelain fused to metal restoration. 
To calculate the mesiodistal width of the second premolar and first molar, Wheeler’s Atlas 
of Anatomical Natural Tooth Morphology was used (Figure 23) [44]. The atlas was used 
again for digital preparation of the crown models. Properties of chromium-cobalt alloy were 
used for the framework and feldspatic porcelain as used to simulate the second premolar 
and the first molar of a mandibular model. The metal thickness of the framework was 0.8 
mm and the porcelain thickness was at least 2.0 mm. The thickness of porcelain changes 
with the creation of pits and trabeculae of the tooth surface. In most FEA studies, not only 
the cement thickness but also the interface between the materials is assumed to be 100% 



 
Application of Finite Element Analysis in Implant Dentistry 35 

bonded [9,18,25,31,34]. Implant, abutment, abutment screw, framework, and porcelain 
structures are considered to be a single unit (Figure 24). In contrast, there are some studies 
that use a contact condition between the abutment and implant set as a frictional 
coefficient [26]. In these studies, the corresponding material properties are used and 
modeled separately. Most studies also model the implant as rigidly anchored in the bone 
model along its entire interface and with  total osseointegration. It is impossible to 
visualize these interface conditions in real life, but simplifications in interface conditions 
will inevitably result in considerable inaccuracy. The most common drawback of FEA 
from the clinical perspective is that many features that directly affect model accuracy, 
such as loading conditions, material properties, and interface conditions are neglected or 
ignored. In most cases, researchers neglect one or more features in their studies. 
Moreover, bias may result from interpretation of data obtained from an FEA study to that 
obtained from another. Within a single study, these simplifications are consistent for all 
the simulated models; therefore, the accuracy of the analysis from the stress distribution 
viewpoint is not affected, as long as the models are compared with each other in the same 
study [9,18,25,31,34]. 

 

 
Figure 20. Implants are modeled with micro and macro threads 
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Figure 21. Implants are modeled with threads and abutments 

 
Figure 22. Superstructure modeled into a rectangular shape 
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Figure 23. Digital preparation of crown models 

 
Figure 24. Implant, abutment, abutment screw, framework, and porcelain structure are modeled as 1 unit 
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Almost all of the elastic properties of selected living and non-living materials are available 
in the literature [9,25,31,34]. Young’s modulus and Poisson’s ratio are used in models to 
simulate reality as closely as possible. For example, alveolar bone (both cortical and 
cancellous portions), implant, abutment, metal framework, and porcelain can be included in 
the model properties.  

4. Boundary conditions 

A boundary condition is the application of force and constraint. The different ways to apply 
force and moment include a concentrated load (at a point or single node), force on a line or 
edge, a distributed load (force varying as an equation), bending moments, and torque [45]. 
In structural analysis, boundary conditions are applied to those regions of the model where 
the displacements and/or rotations are known. Such regions may be constrained to remain 
fixed (have zero displacement and/or rotation) during the simulation or may have specified, 
non-zero displacements and/or rotations. The directions in which motion is possible are 
called degrees of freedom (DOF). Zero-displacement constraints must be placed on some 
boundaries of the model to ensure an equilibrium solution. The constraints should be placed 
on nodes that are located far from the region of interest to prevent overlap of the stress or 
strain fields associated with reaction forces with the bone-implant interface. In maxillary 
FEA models, the nodes along the external lines of the cortical bone of the oral and 
nasopharyngeal cavities were fixed in all directions [46]. 

In most FEA studies that include models of the mandible, the boundary conditions are set as 
a fixed boundary [9]. Zhou et al. developed a more realistic 3-D mandibular FEA model 
from transversely scanned computed tomography imaging data. The functions of the 
muscles of mastication and the ligamentous and functional movements of the 
temporomandibular joints (TMJs) were simulated by means of cable elements and 
compressive gap elements, respectively. Using this mandibular FEA model, it was 
concluded that cable and gap elements could be used to set boundary conditions, improving 
the model mimicry and accuracy [47]. Chang et al. used a technique in which only half of 
the model was meshed, thus symmetry boundary conditions were prescribed at the nodes 
on the symmetry plane. Models were constrained in all directions at the nodes on the mesial 
and symmetrical distal bone surfaces [48]. Expanding the domain of the model can reduce 
the influence of inaccurate modeling of the boundary conditions. This, however, will be at 
the expense of computing and modeling time. Teixera et al. concluded that in a 3-D 
mandibular model, modeling the mandible at distances greater than 4.2 mm mesial or distal 
from the implant did not result in any significant increase in FEA accuracy [49]. Use of 
infinite elements is another potential method for modeling boundary conditions [9]. 

5. Loading conditions 

Marginal bone loss in the peri-implant region may be the result of excessive occlusal force 
[50]. Extensive investigations are needed to establish and understand the correlation 
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between marginal bone loss and occlusal forces; including the engineering principles, 
biomechanical relationships to living tissues, and the mechanical properties of bone 
surrounding implants [50]. In recent years, a greater amount of materials used for oral 
implantology are fabricated from titanium and titanium alloy. The Young’s modulus of 
titanium is 5-10 times greater than that of cortical ridge bone surrounding implants [51]. The 
fundamental engineering principle, composite beam analysis, expresses the concept that 
when 2 materials of different Young’s modulus are placed in direct contact with no 
intervening material and 1 material loaded, a stress contour will be described at the point 
where the 2 materials come into contact [52]. For oral implantology, these stress contours are 
of greater magnitude at the crestal bone. Therefore, the loading condition is another 
important part of FEA studies. Each component modelization stage contributes to the final 
analysis after loading. In other words, from the beginning to the end, all procedures and 
FEA stages add to the ability to extrapolate the results of bite forces surrounding the peri-
implant region and prosthetic structures.  

Bite forces may be defined as compressive, tensile, or shear forces. Compressive forces 
attempt to push materials toward each other. Tensile forces pull objects apart. Shear forces 
on implants cause sliding. The most detrimental forces that can increase the stress around 
the implant-bone interface and prosthetic assembly are tensile and shear forces. These forces 
tend to harm material integrity and cause stress build-up. In general, the implant-prosthetic 
unit can adapt to compressive forces [51]. In actual mastication, the repeated pattern of 
cyclic forces transmits loading via the restoration and dental implants to peri-impant bone. 
This generates different amounts of stress around the ridge and also in the prosthetic 
structure. However, randomized cyclic forces are not easily simulated. Therefore, most FEA 
studies use static axial and/or non-axial forces. Non-axial loads generate distinctive stress in 
the ridge especially in the cortical bone. The main remodeling differences between axial and 
non-axial loading are affected mostly by the horizontal component of the resultant stresses 
[53]. Therefore, for realistic simulation, combined oblique loads (axial and non-axial) are 
generally used. One study, comparing dynamic with static loading, revealed that dynamic 
loading resulted in greater stress levels than static loading [54]. Dynamic loading has 
consistently been found to have more osteogenic potential than static loading [55]. Sagat et 
al.  investigated the influence of static force on peri-implant stress. In varied models, 100 N 
static forces were applied vertically and separately to the anterior and posterior parts of a 
bridge [18]. In another study, static forces of 100 N were applied at 30 degrees obliquely and 
separately to the lingual inclination of the buccal cusps of a crown (Figures 25,26) [25]. In 
another study, loading was simulated by applying an oblique load (vertical load of 100 N 
and horizontal load of 20 N) from buccal to palatal region at 4 different locations. An 
equivalent load of 200 N was applied in the vertical direction and 40 N in the buccal-palatal 
direction. The application point of the force was on the central and distal fossae of the crown 
[48]. Eskitascioglu et al. used an average occlusal force of 300 N applied to a missing second 
premolar implant-supported crown. Three-point vertical loads were applied to the tip of the 
buccal cusp (150 N) and distal fossa (150 N); the tip of the buccal cusp (100 N), distal fossa 
(100 N), and mesial fossa (100 N) [56]. 
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Figure 25. Static forces were applied at 30 degrees obliquely and separately to the lingual inclination of 
the buccal cusps of the crown 

As mentioned before, oblique loads are more destructive to the peri-implant bone region 
and clinically disruptive to prosthetic structures. The magnitude of bite force may change 
according to age, sex, edentulism, parafunctional habits, and may differ from anterior to 
posterior in the same mouth [9,31]. In FEA literature, the locations for the application of bite 
force change according to the modeling of the restoration [9,31]. In advanced modeling 
studies, more realistic force application could be described including ridges of the cusp, 
labial or lingual surfaces of crown, occlusal surface, distal, and mesial fossa [9,27,31,57]. For 
realistic simulation of biting, loading forces should be applied to the restoration first, and 
then transmitted by the abutment to the implant and surrounding bone. Stress 
concentrations will then be generated, evaluated, and proper risk assessment will be 
considered.  
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Figure 26. Force application to the region of restoration 

6. Bone-implant interface 

The ‘osseointegration’ concept was described as the direct contact between living bone and a 
loaded dental implant surface by Brånemark et al. [58]. The most widely used material for 
dental implant manufacture is pure titanium (Grade 4),  titanium alloy (Grade 5), and rarely  
zirconia [59-62]. These materials have good biocompatibility with surrounding tissues, are 
resistant to deformation, and are easily manipulated for shaping as a natural tooth root 
forms by Computer Numerical Control (CNC) machines [59-62]. Titanium alloy has 
mechanical advantages over pure titanium in implant manufacture. With increases in grade 
number, the alloy becomes much stronger and more resistant to fractures or wearing of the 
components [59-62]. However biocompatability may be reduced in inverse proportion the 
increase in grade number. Implant companies use Grade 4 or Grade 5 titanium for the 
implant body and generally choose Grade 5 titanium for implant abutment manufacture. 
Recently, to increase the strength of implant bodies, new materials have also been 
introduced into the market, such as roxolid (a zirconium and titanium combination) [63]. 
The use of zirconium and titanium combination material as an implant body has limited 
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scientific data and requires long-term investigations. Therefore, most FEA studies in the 
literature involve titanium and titanium alloys [9,18,24,31]. 

The most commonly used surfaces for implant bodies are rough surfaces. Different implant 
surface modifications (sandblasted, acid-etched, sandblasted and acid-etched, anodized, 
hydroxyapatite coatings, and plasma-sprayed) are proposed to change the characteristics of 
the surface from machined to rough, to increase the osteoblastic cell attachment level and 
also bone-implant contact (BIC) [64-68]. The influence of these surface modifications on BIC 
and cell attachment are still being investigated for a stronger osseointegration level between 
implant body and bone. Comparative studies show different BIC levels changing from 13% 
to 80% percent [69-79]. BIC values may change according to the jaw, placement of the region 
of the implant, healing time, implant design, and surface structure [64,69,70,72-74]. 

In most FEA studies, the bone-implant interface was assumed to be 100% bonded or 
completely osseointegrated [9,16,18,23,25]. As mentioned before, this is not proper modeling 
from a clinically realistic point of view. Cortical and cancellous bone also have different 
levels of BIC because of density and availability. Therefore, most studies use cortical bone of 
uniform thickness surrounding cancellous bone and proper material properties are chosen 
while modeling [9,16,18,23,25]. The degree of BIC distinctly affects the stress concentration 
value and distribution. In denser bone, there is less strain under loading compared with 
softer bone [80]. In some studies, BIC levels were assumed to be ≤100% for simulation of soft 
bone or immediate loading scenarios [9,81]. Evaluation of peri-implant stress in FEA studies 
is important for obtaining accurate treatment methods in implant dentistry. Implant and 
surrounding bone should be stressed within a certain range for dynamic physiologic 
remodeling. If ideal functional forces are placed on a restoration, the surrounding bone can 
adapt to the stresses and increase its density [82]. Overload may cause high stresses at the 
crest of the ridge and result in bone resorption. The direct opposite of this result is disuse 
atrophy of bone due to too little stress in the peri-implant region. Maintenance of bone 
density and stabilization is a direct result of the ideal stress distribution [80]. According to 
Frost studies, strains in the range of 50-1500 microstrain stimulates cortical bone mass and 
represents the physiological range. Strain beyond this range may cause overload and strain 
less than this range may not stimulate bone enough [80,83-85]. Most FEA studies, evaluate 
the risk assessment according to high stress values [9,16,18,23,25]. In other words, the most 
favorable modeling has the lowest stress values, and in contrast, the most deleterious 
modeling has the highest stress values [9,16,18,23,25]. However intensely lower stress values 
may also cause bone resorption because of inadequate bone stimulation.  

7. Evaluation of stress 
Under bite force, localized stress occur at the prosthesis structure and bone. Stress is the 
magnitude of the internal forces acting within a deformable body. It is a measure of the 
average force per unit area of a surface within the body on which internal forces act. These 
internal forces appear as a response to external forces directed on the body [86-88]. Internal 
resistance after the application of the force applied on the body is not practically 
measurable. Therefore an easier process is to measure the applied force to a cross-sectional 
area. The dimension of stress is that of pressure, the Pascal (Pa), which is equivalent to 1 
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Newton (force) per square meter (unit area), that is N/m2. Stress is often reported in scientific 
publications as MPa. Stress is directly proportional to the force and inversely proportional to 
the area across which the force is applied. It is important to determine the area across which 
any force is applied. For example, the surface area of the occlusal pit restoration less than 4 
mm. For this reason, the magnitude of stress in many restorations reaches hundreds of MPa 
[9,16,18,23,25,51].  

When the force is applied to mass, a deformation occurs as a result of this force. A strain is a 
normalized measure of deformation representing the displacement between particles in the 
body relative to a reference length [9,16,18,23,25,51,86,87,88]. There is no measurement unit 
of strain. Strain can be defined as the deformation ratio of the original length.  

In FEA studies related to implant dentistry, frequently von Mises stress (equivalent tensile 
stress), minimum principal, and maximum principal are used to evaluate the effect of 
loading forces on the peri-implant region or prosthesis structure [9,16,18,23,25,89]. When a 
specific force is applied to  the body, von Mises stress is the criterion used to determine the 
strain energy principles. Loading forces affecting the object can be evaluated 2 or 3 
dimensionally. There are 3 "Principal Stresses" that can be calculated at any point, acting in 
the x, y, and z directions. The von Mises criteria refer to a formula for combining these 3 
stresses into an equivalent stress, which is then compared to the yield stress of the material 
[25,90]. The major stress values are formed when all the components of the shear are zero. 
When an element is in this position, the normal stresses are called principal stresses. 
Principal stresses are classified as maximum, intermediate, and minimum principal stresses. 
The maximum principal stress is a positive value indicating the highest tension. The 
intermediate principal stress represents intermediate values. The minimum principal stress 
is a negative value indicating the highest compression [9,16,18,23,25,89].  If the data obtained 
from the analysis are positive values, then they are considered tensile stresses, negative 
values indicate compression-type strains.  

Frequently, different color figures are used according to the amount of stress around peri-
implant regions and prosthetic structures (Figure 27). Stresses on each model are evaluated 
according to the stress values from low to high. In other words, the most favorable model 
has the lowest stress values, and in contrast, the most deleterious model has the highest 
stress values (Figure 28).   

 
Figure 27. Different colors indicate the amount of stress around the peri-implant region and prosthetic 
structure 
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Figure 28. High and low stress values depicted in different colors in the models 

In a previous study evaluating stress distribution, maximum von Mises (equivalent) stresses 
on each model are depicted around peri-implant region [18]. Eskitascioglu et al. evaluated 
maximum stresses (maximum von Mises) within the cortical bone surrounding the implant, 
framework of restoration, and occlusal surface material [56]. In a previous study, the FE 
model was used to calculate not only von Mises stress but also the principal stress. Authors 
explained their approach for this debate as follows: bone can sometimes be classified as 
brittle material; therefore, the principal stress was also implemented to evaluate the 
situation of cortical bone around implants [48]. 

8. Good FEA research development in implant dentistry  

This section is provided for clinicians and researchers who want to plan FEA studies related 
to implant dentistry and to provide a brief summary of research methodology. 

1. Planning a scenario: The most important part of an FEA study is planning a unique 
model of treatment. There are countless FEA studies in the implantology literature; 
therefore, at the beginning of the study, it is highly recommended that you evaluate 
the available literature on your subject. Implant technology is improving rapidly. 
There is currently no perfect dental implant design or implant-abutment connection. 
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Implant manufacturers change their macro design and connections according to 
perceived clinical benefits. The aim of these improvements are less bone resorption 
around peri-implant regions, less micromotion at abutments, better loading 
distributions at dental implant structures, and good conical sealing. These properties 
are commonly related to biomechanics and should be investigated not only with 
clinical studies but also with FEA studies. All novel designs of implants or materials 
can be subject to investigation and can be compared with traditional structures. 
Another way of instituting FEA study is investigating treatment alternatives. New 
and old treatment modeling can be compared, limitations, and application areas can 
be better understood. 

2. Computer stage: This is the second part of FEA study. Generally clinicians have limited 
knowledge about modeling in computers and need help from computer engineers. It 
will be very wise to collaborate with friends at that field. Without a collaborator in 
computer engineering, too much time will be spent learning how to prepare models 
and developing the appropriate knowledge for the computational techniques necessary 
for model implementation. The clinician should manage the study and provide 
direction to the engineer. If the engineer does not have knowledge of the field of 
implant dentistry, seminars can be given to introduce the basic concepts of 
implantology. The seminars can include concepts such as indications for dental 
implants, dental implant parts, bone physiology, biting forces, connections of implants 
with bone, and the logic of implantology. As mentioned before, the shape of the 
materials can be scanned and converted digitally. Dental volumetric or computed 
tomography are good alternatives to scan and build bone structures. Devices used for 
routine treatments, can be found easily and are not expensive. For modeling of implant 
parts and superstructure, there are many sources, including manufacturers guidelines, 
scanning (advanced engineering 3-D scanning needed), and tooth atlas. The clinician 
should make every effort to maintain contact with their colleagues to allow frequent 
and efficient model evaluation and adaptation.  The number of elements and nodes, can 
be increased to achieve more detailed modeling. However, this may be quiet time-
consuming and may implicate computing complications. Therefore, the engineer 
should clearly understand the aim of the research. Boundaries, limitations can be 
applied at modeling and element numbers can be increased only at the region of 
interest. These applications should not directly affect the results achieved. In the 
literature there are many software packages available for FEA study. The computer 
engineer can aid clinicians in choosing the appropriate software package for the specific 
application. In general, von Mises (equivalent stress), minimum, and maximum 
principal stress values are being used in FEA studies related to implant dentistry. These 
stress values are evaluated from low to high, and assessments are made according to 
these values. Higher values are considered more destructive and involve greater risk 
than low values. The most common material properties used in FEA studies of implant 
dentistry are listed in Table 1 [9,27,48,56,57,91-109]. 
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Material Young Modulus (MPa) Poisson Ratio Ref. No. 
Ti-6Al-4V  110,000 

110,000 
100,000 

0.35 
0.33 
0.35 

27, 48, 57, 91 
 

Pure titanium  117,000 0.3 9, 92, 93 
Type 3 gold alloy  90,000 

100,000 
80,000 

0.3 
0.3 
0.33 

48, 94, 95 
 
 

Cortical bone  13,700 
13,400 
10,000 
15,000 

0.3 
0.3 
0.3 
0.3 

27, 56, 57, 96, 97 
 

Trabecular bone  

 
1,370 
1,500 
1,370 
150,000 
250,000 
790,000 

0.3 
0.3 
0.31 
0.3 
0.3 
0.3 

27, 56, 57, 98, 99 

Periodontal ligament  170 0.45 108 
Ni-Cr alloy  204,000 0.3 108 
Dentin  18,600 0.31 108 
Porcelain  66,900 

67,700 
0.29 
0.28 

31, 48, 109 

Co-Cr alloy  218,000 0.33 56 
Feldspathic porcelain  82,800 0.35 56 
Enamel  
 

41,400
46,890 
82,500 
84,000

0.3
0.3 
0.33 
0.33

97, 100-102 
 

Mucosa  10 0.40 103
Ag-Pd alloy  95,000

80,000
0.33
0.33

109

Resin  2,700 0.35 31
Resin composite  7,000 0.2 31
Gold alloy screw 100,000 0.3 93
Titanium abutment 110,000 0.28 109
Titanium abutment screw 110,000 0.28 109
Zirconia implant 200,000 0.31 105, 107 
Zirconia abutment 200,000 0.31 105, 107 
Zirconia core 200,000 0.31 105, 107 
Zirconia veneer 80,000 0.265 106, 107 

Table 1. Material properties used in finite element analysis studies of implant dentistry 
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3. Interpretation of results: FEA studies have several advantages over clinical, pre-clinical, 
and in vitro studies. Most importantly, patients will not be harmed by the application of 
new materials and treatment modalities that have not been previously tested. Animals 
will not suffer from these biomechanical studies. However, clinicians should be aware 
that all of these applications are being performed on a computer, with critical 
limitations and assumptions that will clearly affect the applicability of the results to a 
real scenario. In the application of FEA studies, the most common drawback is 
overemphasis of the results. Simplifications are made for all simulated models; 
therefore, the models should be compared with each other within the same study. Other 
studies may use varied material properties and different planning scenarios. 
Confirming the FEA results with mechanical tests, conventional clinical model analysis, 
and preclinical tests are essential. It should not be forgotten that FEA studies are helpful 
for clinical trials but the results achieved from these studies are not valuable as clinical 
study results. However, before beginning biomechanical clinical trials, it will be wise to 
refer to FEA studies. 

9. Conclusion 

FEA is a numerical stress analysis technique and is extensively used in implant dentistry to 
evaluate the risk factors from a biomechanical point of view. Simplifications and 
assumptions are the limitations of FEA studies. Although advanced computer technology is 
used to obtain results from simulated models, many factors affecting clinical features such 
as implant macro and micro design, material properties, loading conditions, and boundary 
conditions are neglected or ignored. Therefore, correlating FEA results with preclinical and 
long-term clinical studies may help to validate research models. 
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1. Introduction 

Titanium and titanium alloys have become the preferred materials for dental implants 
owing to their good biocompatibility, excellent corrosion resistance and suitable mechanical 
properties. However, the existing titanium implants still have several drawbacks. Firstly, the 
bonding strength at the interface between the implant and the bone is not high enough and 
the biological fixation has not been achieved. Secondly, there exist mismatches between the 
elastic modulus of the implant and of the bone. A stress shielding or concentration can be 
easily induced on the interface and results in a potential risk to the long-term stability of the 
implant. The success or failure of an implant is determined by the manner how the stresses 
at the bone-implant interface are transferred to the surrounding bones [1,2]. The mandible has 
structural characteristic of an outer layer of dense cortical bone and an inner layer of porous 
cancellous bone. The elastic modulus and mechanical properties of cortical bones are 
different from those of cancellous bones. Nevertheless, current dental implants are mainly 
fabricated using dense titanium and titanium alloys, which have no features representing 
the difference between the inner and outer layers of the mandible or that between their 
elastic modulus. And therefore, the incompatibility of the mechanical properties between 
the implant and the bone was encountered. The use of porous metal implants for medical 
applications has two main advantages. One is the similar elastic modulus to the bone, which 
helps to prevent the stress shielding effect at the bone interfaces. The other is that it can 
provide a structural condition for the bone ingrowth to achieve biological fixation [3,4]. 
However, the low mechanical strength limits their further applications in the implanting 
industry. In this study, according to the structural characteristics of the mandible and the 
clinical requirements for the implant mechanical properties, a novel bio-mimetic design of 
implant is proposed for the titanium implants, which composes of a cortical bone zone with 
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a dense structure and a cancellous bone zone with a porous outer layer and a dense core, as 
well as another three implants with different structures.  

The finite element method is one of the most frequently used methods in stress analysis in 
both industry and science[5]. Three-dimensional (3-D) finite element analysis (FEA) has 
been widely used for the quantitative evaluation of stresses on the implant and its 
surrounding bone[6,7]. Therefore, FEA was selected for use in this study to examine the effect 
of the structure and elastic modulus of dental implant on the stress distribution at implant-
bone interface. The 3-D models of the designed implants were constructed and the finite 
element analyses were carried out using Ansys Workbench 10.0. The stress distributions on 
implant-bone interface were investigated under static loading condition in order to provide 
design guidelines for the development of new implants. At the same time,the stress 
distributions on implant-bone interface were investigated in both dynamic and static 
loading conditions, and the  fatigue behaviors of the bio-mimetic implant were analyzed 
based on fatigue theories and the formulas, in order to provide theoretical basis for the 
development of new implants. 

2. Material and methods 

2.1. Structur of the biomimetic implant 

The biomimetic implant comprised of two layers, including the porous layer of open 
connected pores, which can provide the structure for bone ingrowth and has mechanical 
properties similar to the surrounding bones. The dense core ensures that the mechanical 
properties of implant meet the requirements of clinical applications (Fig.1). 

 
Figure 1. Structure of the bio-mimetic porous titanium implant. A:section plane, B : cross section, 1: 
dense core, 2: porous layer 

(A) (B)
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2.2. CAD and finite element modeling of the elements 

A 3-D model of a mandibular section of bone with a missing second premolar and its 
superstructures were used in this study. A mandibular bone model was selected according 
to the classification system of Lekholm and Zarb. Trabecular bone was modeled as a solid 
structure in cortical bone. A bone block with dimensions of 20×14×35mm, representing the 
section of the mandible in the second premolar region, was modeled. It consisted of a 
spongy center surrounded by cortical bone of 2 mm.  

Four implants models with dimensions of d4.1 mm×12mm were selected in this study. 
Those implants and abutment were assumed to consist of the same material. Implant No.1 
was dense with a high elastic modulus. Implant No.2 was a bio-mimetic  with a high 
modulus in the cortical bone zone and low modulus-outer and high modulus-interior in the 
cancellous bone zone. Implant No.3 had a high modulus in the cortical bone zone and a low 
modulus in the cancellous bone zone. Implant No.4 had a whole lower elastic modulus. The 
elastic modulus of the dense titanium (high modulus) was set as 103.4GPa. The elastic 
modulus of implant No.1 (low modulus) was set as 40% of the dense titanium. To 
investigate the effect of elastic modulus on the interface stress, modulus in the low modulus 
zone varied in the range of 80%,40% ,10% and 1.3% of the modulus of the dense titanium, 
i.e.1370MPa. Mechanical properties of the implants were shown in Table 1. 

The 3-D model of the implants was constructed by the CAD software Pro/E. The finite 
element analyses were carried out using Ansys Workbench 10.0. Tetrahedron elements in 
implant and bone corresponding to SOLID45 type elements in ANSYS element library with 
each node had three degrees of freedom. The finite element model is shown Fig.2 and Fig.3. 
The physical interactions at implant–bone interfaces during loading were taken into account 
through bonded surface-to-surface contact features of ANSYS. Numbers of nodes and 
elements of implant and bones were shown in Table 2. 

 
Figure 2. Finite element models of bone and implant 
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Figure 3. Finite element models of implant. A: dense body, B: porous layer, C: implant 

 

Material Elastic Modulus/GPa Poisson ratio ,υ 
Lower modulus titanium 41.36 0.35 

Dense titanium 103.4 0.35 
Cortical bone 13.70 0.30 

Cancellous bone 1.37 0.30 

Table 1. Mechanical properties of materials used in the study 

 

Implants 
Number of nodes Number of elements 

Dense Porous Dense Porous 
No.1 and No.4 15835 - 84828 - 

No.2 8880 9186 45486 42926 
No.3 3968 12313 20230 65703 

Cortical bone 13329 - 65297 - 
Cancellous bone - 5395 - 16324 

Table 2. Numbers of nodes and elements of implant and bones 

2.3. Loads and boundary conditions 

All materials were assumed to be homogenous, isotropic and linearly elastic. The bone-
implant interfaces were assumed to be 100% osseointegrated. The sides and bottom of 

(A) (C)(B)
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cortical and cancellous bones were set to be completely constrained, and the boundary 
conditions were extended to the corresponding node. Multi-constraining was imposed on 
implant from bottom to top, in order to limit the freedom of the roots.  

Static loading was loaded to evaluate the implant-bone model. The implants were assumed 
to be under an axial force of 50-300N and a lingual force of 25 N in the angle of 
approximately 45° to the occlusal plane . 

Static and dynamic analyses of the implant need to consider and ensure the safety in the 
design. In the literature, implants are often worked according to the results of static analysis. 
Under the same masticatory forces, dynamic effects may add  10–20% more loads to implant 
than static effects. This must be taken into account to safeguard the fracture or fatigue 
failure of the implant. Therefore, using dynamic loading during the evaluation of a new 
implant is more reasonable. In the simulation of the normal chewing motion, forces close to 
the masticatory forces of normal adults were loaded to implant-bone model. Time 
dependent masticatory load was applied. Time history of the dynamic load components for 
5 s is demonstrated in Fig. 4. These estimations were based on the assumption that an 
individual has three episodes of chewing per day, each 15 min in duration at a chewing rate 
of 60 cycles per minute (1 Hz). This is equivalent to 2700 chewing cycles per day or roughly 
106 cycles per year. 

The von Mises stresses were used as the key indicators to measure stress levels and evaluate 
the stress distribution at implant-bone interface, as well as the maximum stress values on 
cortical bone. The main indicators are: 1) stress distribution in axial at the implant-bone 
interface, and 2) the maximum von Misese stresses. 

 
Figure 4. Dynamic loading in 5 seconds 
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2.4. Fatigue analysis 

A good dental implant design should satisfy the maximum or an infinite fatigue life. This 
can only be ensured by physical testing or a fatigue analysis. In this study, the fatigue life of 
the dental implant was predicted using the finite element stress analysis with computer 
code of ANSYS/Workbench (ANSYS, 2003). Fatigue properties shown in Fig. 5 were used in 
fatigue calculations. Fig. 5 was known as S–N curves, showing fatigue properties of pure 
titanium in terms of alternating stress versus number of cycles. Fatigue life of prosthesis was 
calculated based on Goodman, Soderberg, Gerber and mean-stress fatigue theories which 
were illustrated in Table 3.   

In Table 3, N indicates the safety factor for fatigue life in loading cycle, while Se is for 
endurance limit and Su is for ultimate tensile strength of the material. Mean stress m and 
alternating stress a are defined respectively as below, respectively. 

 max min

2m
  

   (1) 

 max min

2a
  

   (2)  

Von Misses stresses obtained from finite element analyses are utilized in fatigue life 
calculations. All fatigue analyses were performed according to the infinite life criteria (i.e. N 
= 109 cycles). 

 
 

 
 
Figure 5. Fatigue curves (S-N curve) of pure titanium 
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Fatigue theories Fatigue formulas 
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Table 3. Fatigue theories and formulas used in fatigue life predictions 

3. Results 

3.1. Stress distribution on implant-bone interface under static loading condition 

3.1.1. The maximum stresses at implant-bone interface 

Table 4 shows the maximum von Mises stresses of different structure implants. It can be 
seen that the interface stresses of implant No.3 are much higher than those of other 
implants. There is no obvious difference in the maximum stress between implant No.1 and 
No.4. Implant No.2 has the lowest maximum stress at both cancellous bone and root zone 
comparing with other implants. After the transferring of stress to the surrounding bones, the 
maximum stress in cortical bone is larger than that of cancellous bone in the surrounding 
bone tissue. Implant No.1 has the largest stress in cortical bone and No.3 has the largest 
stress in the root of cancellous bone. 
 

Implants 
Stress/MPa 

Cortical bone 
interface 

Cancellous bone 
interface 

Cortical bone 
Cancellous 

bone 
No.1 23.434 12.553 11.668 1.456 
No.2 23.451 8.261 9.685 1.525 
No.3 33.532 15.77 8.419 4.845 
No.4 23.453 14.482 9.012 1.799 

Table 4. Maximum von Mises stresses of implants with different structures 

3.1.2. Stress distribution at implant-bone interface of implants under static loading. 

Figure 6 represents the stress distribution at the implant-bone interface in an axial direction. 
It can be seen that the maximum stresses of the implant No.1, 2 and 4 show no difference in 
the cortical bone zone and the maximum stress zone is located at the marginal zone of 
cortical bone. The maximum stress zone of implant No.3 is located at the interface between 
cortical and cancellous bones. The area of the high stress zone and the value of interface 
stress of the implant No.2 are the smallest in both the cancellous bone and its root apex. 
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Figure 7 represents the stress distribution in the cancellous bone zone of the implants. In all 
cases, there are high stress zones in the junction of the porous layer and the dense body. 
Among them, implant No.2 has the lowest interface stress. In the cancellous bone zone, the 
interface stress decreases from top to bottom, and increases at the root apex. And once 
again, No.2 has the lowest stress at the root apex, while No.3 has an obvious higher value 
than the others. The maximum stress exists at the bone interface of the implant No.1, which 
was 42.96% higher than that of implant No.2. 

It was demonstrated that the structure of the implants has a predominate influence on the 
interface stress. Implant No.3 has a high trend to cause the stress concentration, while 
implant No.2 can efficiently reduce the interface stress, facilitating the transportation of the 
interface stress to the surrounding bones, avoiding the stress shielding and concentration, 
which is beneficial for the long time stability of the implants. 

 
Figure 6. Stress distribution in axial direction at implant-bone interface of different structure implants  

 
Figure 7. Stress distribution in spongy bone zone of different structure implants   

No. 1 No. 3No. 2

No. 1 No. 4 No. 3No. 2

No. 4 
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3.2. Effect of elastic modulus on the interface stress distribution of implant No.2 

It was demonstrated that implant No.2 has the lowest interface stress. Thus, it is chosen to 
study the effect of elastic modulus of low modulus zone on the interface stress distribution at 
the interfaces. The elastic modulus in the low modulus zone varies in the range of 80%, 40%, 
10% 1.3% of the modulus of the dense titanium, i.e.1370MPa. Table 8 shows that the interface 
stress in cancellous bone decreases with the decrease of the modulus of the low modulus layer, 
while there is no significant change in the cortical bone zone. For the interface stress of 
surrounding bones, it can be seen that the stress increases and that at the root apex of 
cancellous bone decreases with the decrease of the modulus of the low modulus layer. 
 

Implants 
Stress/MPa

Cortical bone
interface

Cancellous bone
interface

Cortical bone 
brink

Cancellous bone 
root apex 

80% 23.452 12.725 9.172 1.739 
40% 23.451 8.261 9.685 1.525 
10% 23.451 3.733 11.224 1.094 

1370MPa 23.443 2.216 12.304 1.351 

Table 5. Maximum von Mises stresses of implants 

 
Figure 8. Stress distribution of implant No.2 in axial direction at implant-bone interface: (a)80%; (b)40%; 
(c)10%; (d)1.3% 

Figure 9 represents the stress distribution at the implant-bone interface in the axial direction. 
It can be seen that, under the same loading, a decrease of the modulus at low modulus layer 
has no significant influence on the interface stress of cortical bone. Figure 5 shows the stress 
distribution at the interface between implant No.2 and cancellous bone. The interface stress 
varies significantly with the change of the modulus of the low modulus layer. As the 
modulus of the low modulus layer decreases, the area of the high stress zone reduces, and 
the volume of the interface decreases dramatically. When the modulus of the low modulus 
layer reduces to 10% of the dense value, a uniform distribution of the interfacial stress 
without any high stress zone is obtained. For the specimens with the modulus of 1370MPa, 
the interface stress is 2.216MPa, 82.6% smaller than that of 80% ones. With the decrease of 

(a) (d) (c)(b)
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the modulus, the interface stress between the dense core and the porous layer increases. 
Figure 10 represents the stress distribution in dense body of implants No.2. It can be seen 
that the high stress zone is located at the interface between the cortical bone and cancellous 
bone. For the specimens with the modulus of 10% of the dense ones, the maximum 
interfacial stress at the porous-dense core interface is 18.556MPa. And it reduced to 
13.752MPa for those of 80% specimens. 

 
Figure 9. Stress distribution at interface between implant No.2 and cancellous bone: (a)80%; (b)40%; 
(c)10%; (d)1.3% 

 
Figure 10. Stress distribution in dense body of different modulus implants No.2: (a)80%; (b)40%; 
(c)10%; (d)1.3% 

3.3. Effect of thickness of low modulus zone on the interface stress distribution 
of implant No.2 

In order to further optimize the structure of the implant, the effect of thickness of low 
modulus zone on the interface stress distribution of implant No.2 was carried out, by 

(a) (d) (c)(b)

(a) (d) (c)(b)
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varying the thickness of the low modulus zone from 0.5, 0.75, 1 to 1.25mm and maintaining 
the same implant diameter of 4.1mm and a constant modulus of low modulus zone, 
i.e.1370MPa. Figure 11 represents the stress distribution at the implant-bone interface in the 
axial direction. It can be seen that, in all cases, the cortical bone are in high stress zone while 
the cancellous bone are in low stress zone. The change of the thickness of low modulus zone 
affects the stress distribution of cancellous bone a lot while it has little influence on cortical 
bone, as shown in Fig.12. With the increase of the thickness, the interface stress decreases, 
especially in the root apex. Moreover, the distribution of the interface stress becomes more 
uniform. When it comes to an optimal thickness suitable for the clinical application, the 
strength and ingrowth of the bone tissues should be considered, which need further 
verification of MADIT experiments. 

 
Figure 11. Stress distribution in axial direction ata implant-bone interface of implants No.2 with 
different thickness of low modulus layer: (a)0.5mm;(b)0.75mm;(c)1mm;(d)1.25mm 

 
Figure 12. Stress distribution at cancellous bone interface of implant No.2 with different thickness of 
low modulus layer:(a)0.5mm;(b)0.75mm;(c)1mm;(d)1.25mm 

(a) (d) (c)(b)

(a) (d) (c)(b)
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3.4. Stresses distribution on implant-bone interface under static and dynamic 
loading conditions 

In order to compare the Von Mises stresses of the sense implant with that of the bio-mimetic 
implant under dynamic loading and static loading stations, the model structures of NO.1 
and NO.2 are designed in the same way. The elasitc modulus of NO.1 and NO.2 dense body 
both are 103.4Gpa,that of NO.2 porous layer is 41.36Gpa, the poisson ratio of all three is 0.35. 

3.4.1. Maximum stresses  

As shown in table 6, the maximum stresses under dynamic loading conditions were 17.15% 
higher than that under static loading conditions. The maximum stresses  in cortical bone of 
two implants were similiar. However, the maximum stress of the dense implant was 75.79% 
high than that of the bio-mimetic implant in spongy bone, and 22.46% higher in the root 
region. The maximum stresses at implant-bone interface were much smaller than the yield 
strength of pure titanium (462MPa).  
 

Loading region 
Maximum Von Mises stresses (MPa) 

No.1 static 
No.1 

dynamic 
No.2 
static 

No.2 
dynamic 

Cortical bone region 15.265 17.884 15.264 17.882 
Cancellous bone 

region 
9.962 11.671 5.661 6.632 

Root-end region 4.973 5.826 4.069 4.767 

Table 6. Maximum Von Mises stresses of the dense implant and the bio-mimetic implant under static 
and dynamic loading conditions 

3.4.2. Stress distribution within the cortical bone surrounding the implant neck and in 
implant-bone interface of implants No.1 and No.2 in static and dynamic loading 

Figure. 13 represent the stress distribution within the cortical bone surrounding the implant 
neck. The maximum stress occurred at the edge of the cervical cortical bone of implant No.2 
were greater than those of implant No.1. For No.2, the maximum stresses were 7.192MPa in 
static loading condition and 8.428MPa in dynamic loading condition. For No.4, the maximum 
stresses were the maximum stresses were 6.67MPa in static loading condition and 7.814MPa in 
dynamic loading condition. The results indicated the implant No.2 had 7.85% and 7.67% 
higher stresses than the implant No.4 in dynamic and static loading conditions, respectively. 
The maximum stresses of the implant No.2 in static and dynamic loading conditions were 
only10.42% and 21.21% of the yield strength of cortical bone, 69MPa, respectively . 

Figure.14 represent the stress distribution in the implant-bone interface in an axial direction. 
In both loading conditions, the maximum stresses at implant interfaces in the implant No.1 
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and 2 showed no difference in the cortical bone area, while the high stress zone of the 
implant No.1 was greater than that of the implant No.2 in the spongy bone area and around 
the root apex. The yield strength of pure titanium was 462MPa. In static and dynamic 
loading conditions, the maximum stresses of the implant No.2 at the interface were 
15.264MPa and 17.882MPa respectively, and they were only3.3% and 3.87% of the yield 
strength of pure titanium. 

Figure.15 represent the stress distribution in interface of spongy-bone implant. The stresses 
at the implant interface in dynamic loading condition were all higher than those in static 
loading condition. Both implant bodies had high stress zones in the junction of the cortical 
bone and spongy bone, and the stresses at the implant interface showed a declining trend 
from top to bottom but increased at the root apex. The interface stresses of the implant No.1 
was higher than that of the implant No. 2, and the maximum stress at the bone interface of 
the implant No.1 was 75.97% higher than that of the implant No.2. 

 
Figure 13. Stress distribution in the cortical bone of the implant No.1 and No.2 under static and 
dynamic loading conditions. 

No.1 static

No.2 dynamicNo.2 static

No.1 dynamic
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Figure. 16 represent the stress distribution in the dense body of the implants. There was a 
high stress zone of the dense body in the junction of the porous layer and the dense body of 
the implant No.2. The maximum stress of 12.306MPa in dynamic loading condition was 
higher than that of 10.504MPa in static loading condition. In the spongy bone area, the high 
stress zone of the dense body of the implant No.2 was greater than that of the implant No.1. 
The yield strength of pure titanium was 462MPa; the maximum stress at the interfaces of 
implant dense body did not reach the yield strength of pure titanium. 

 
Figure 14. Stress distribution in the bone-interface of the implant No.1 and No.2 under static and 
dynamic loading conditions 

 

 
Figure 15. Stress distribution in the spongy bone-interface of the implant No.1 and No.2 under static 
and dynamic loading conditions 

No.1 static No.2 dynamic No.2 staticNo.1 dynamic

No.1 static No.2 dynamic No.2 staticNo.1 dynamic
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Figure 16. Stress distribution in the dense body of the implant No.1 and No.2 under static and dynamic 
loading conditions 

3.4.3. Fatigue analysis of bio-mimetic implant 

In the fatigue calculations, referring to the fatigue curves of pure titanium (S-N curves) 
shown in Figure 5, the fatigue life of implant was calculated based on Goodman, Soderberg, 
Gerber and Mean-Stess fatigue theories and formulas which were illustrated in Table 3. The 
endurance limit of pure titanium (Se) is 259.9MPa, and the yield strength (Sy) is 462MPa. 
The safety factors of different dense bodies of bio-mimetic implants with dynamic preload 
were calculated using the Soderberg formula in Table 3, as shown in Figure. 17. Figure. 17 
represent the safety factors of different dense bodies of bio-mimetic implants when the 
dynamic preload was applied. Under an axial force of 50~300N and a lingual force of 
45°25N in dynamic loading condition, the safety factors of dense body were all above 10. 
The results show that the bio-mimetic implant is safe against fatigue load. 

Figure 18 showed the maximum stress at the interface of porous layer and the bone under 
different preloading conditions. With the increase of the loading, the interface stress of 
porous layer linearly increased. In dynamic loading condition with normal chewing force 
(axial 150N and lingual 45°25N), the maximum stress at the porous layer interface (max) 
was 6.632MPa, and the minimum (mim) was 1.038MPa. When an axial force of 300N and a 
lingual force of 45°25N were applied, the maximum stress at the porous layer interface 
(max) was 11.38MPa, and the minimum (mim) was 1.97MPa. According to the simulation 
results, it was predicted that the strength of the porous layer of the bio-mimetic implant and 
its bonding strength with the dense body interface should both be greater than the 
maximum interface stress (11.38MPa), which ensured the implant safety. The analyses of the 
implant interface stress provide a basis of mechanical properties for the preparation of 
porous layer of bio-mimetic implant. 

No.1 static No.2 dynamic No.2 staticNo.1 dynamic
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Figure 17. Safety factor for dense body of bio-mimetic implant under different dynamic loading  

 
Figure 18. Maximum Von-mises stress for bone-interface porous layer of implant under different 
dynamic loading conditions. 
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4. Discussion 

The functions of implant are mainly dependent on the direct bonding with the surrounding 
bones. The long-term success of an implant is determined by the reliability and stability of 
the implant bone interface, and the success or failure of an implant is determined by the 
manner that the stresses at the bone-implant interface transfer to the surrounding bones[1, 
2]. The main factors contributing to the stability of implants include the structure of the 
implants, the distribution of the interface stress and the combination mode of the interface. 
In order to ensure the long-term stability of an implant, the implant should be designed 
according to two main principles. First, the load should be minimized to avoid exceeding its 
physiological tolerance as overloading can cause bone resorption or fatigue failure of the 
implant. On the other hand, underloading may lead to disuse atrophy and subsequent bone 
loss[3, 4]. Second, the contact zone with the bone should be increased to reduce the bone 
interface stress. The structural characteristic of the mandible shows an outer layer of dense 
cortical bone and an inner layer of loose cancellous bone. Both the elastic modulus and 
mechanical strength of cortical bone (10~18GPa) are higher than those of cancellous bone 
(1.3~4GPa). Current dense implants do not have the structure similar to that of the 
mandible, as well as modulus. As a result, the mechanical compatibility between the 
implant and the bone remains unresolved, and the modified active coating on the surface 
gets easily damaged in the implantation process. An implant with a low elastic modulus is 
believed to be beneficial to transferring the stress to the surrounding bones, resulting in a 
long-term stability[8,9]. The porous implant materials can tremendously improve the 
implant biocompatibility [10-12] by improving the adhesion and outgrowth of those 
osteoblasts, promoting the deposition of extracellular matrix, increasing the adsorption of 
nutrients and oxygen, and promoting the new bones’ growth into pores to achieve biological 
fixation. The porosity can be changed to adjust the density, strength and elastic modulus of 
the material to achieve similar mechanical properties to the replaced hard tissues. 
Meanwhile, the porous structure can provide scaffold for the bioactive coating to promote 
osseointegration. In this study, according to the structural characteristics of the mandible 
and the advantages of the porous implant material, an idea of a bio-mimetic implant is 
proposed. It is a titanium implant composed of a cortical bone zone with a dense structure 
and a cancellous bone zone with a porous outer layer and a dense body. The cortical bone 
has a high modulus, and the porous outer layer of the cancellus bone zone has a low 
modulus. The dense body ensures the strength to meet the requirements of clinical 
applications. To optimize the structure of the bio-mimetic implants, the finite element 
analysis was carried out. The effects of implant structure, modulus and thickness of the low 
modulus layer on the distribution of the interfacial stress were studied. 

The interfacial stress of the implants is mainly located at the interface between the implants 
and the surrounding bones,affecting the interface biological reactions such as bone 
resorption and remodeling. Cortical bone loss and early implant failure after loading are 
usually accompanied by the excess stress at the implant bone interface while a low stress 
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may lead to disuse atrophy and subsequent bone loss [13,14]. It is indicated that, under the 
same situation, the smaller the bone surface area in contact with the implant body is, the 
greater the overall stress becomes [15]. Cortical bone, which has a higher modulus, higher 
strength and more resistance to deformation than cancellous bone [16], can bear more 
loading in masticatory movements [17-20]. In this study, it was supposed that the implant-
bone osseointegration was 100%. Under  the same loading condition, the stress distributions 
at the interface of four different structure implants were compared and analyzed, showing 
the change of the implant structure and modulus in the cancellous bone had significant 
effects on the stress distribution. In all cases, there are high stress zone at the interface 
between cortical and cancellous bone. In cancellous bone, the interface stress decreases from 
top to bottom, and increases at the root apex. 

In the cortical bone zone, all implants present high stress values and the maximum stresses 
are in the same level. In the cancellous bone zone, the maximum stress of the dense implant 
interface was 75.58% higher than that of the bio-mimetic implant, and 22.21% higher than 
that in the root apex zone. The maximum stresses in cancellous bone and root region of 
implant No.2 are lower than those of other three implants. The maximum stress of implant 
No.4 is 42.96% higher than that of No.2. Implant No.3 has the highest stresses in root region. 
The stress distribution at bone-implant interface varied with elastic modulus of low elastic 
modulus layer. The maximum stresses of implant No.2 decreases with the decreasing of 
elastic modulus in cancellous bone region, while there is no significant difference in cortical 
bone region. When the modulus of the low modulus layer is reduced to 10% of the dense 
ones, a uniform distribution of interfacial stress without any high stress zone was obtained. 
With the increase of the thickness of the low modulus layer, the interface stress decreases, 
especially in the root apex. Moreover, the distribution of the interface stress becomes much 
uniform. 

From the biomechanical point of view, a structure like implant No.2, a modulus matches the 
cancellous bone and a suitable thickness can effectively reduce the stress in the implant-
bone interface and be beneficial to the transfer of interfacial stress to surrounding bones, 
which is favorable to the long-term stability of the implant. The structural characteristics of 
this implant are in line with those of the mandible, so that the elastic modulus of the porous 
zone can be reduced to make the elastic modulus of the implant match with that of the 
cancellous bone and thus help the interface stress tranferring. The structural characeristics of 
mandible of implants No.1and No.4 are ingored, which results in the un-uniform interface 
stress distribution and stress concentration in cancellous bone. Although implant No.3 has a 
mandible –like structure, the cancellous bone is a whole low modulus structure, which leads 
to stress concentration at both interface and root apex. 

Implant No.2 has a low modulus-outer and high modulus-interior in the cancellous bone 
zone. The low modulus-outer can be realized by adjusting the porosity and pore size to 
match the mechanical properties, especially the elastic modulus, with the surrounding 
bones. Figure. 19 illustrates the stress distribution of the porous and dense implants under 
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vertical loading. In the model, R refers to the radius of the implant, H refers to the height, 
and F refers to the vertical loading. Assuming that the compressive stress and shear stress 
are uniform, and the compressive stress and shear stress on porous and dense implants are 
σ1, τ1 and σ2, τ2, respectively. The porous implants provide more contact area with the 
bone than the dense implants. Assuming that A1 is the added contact area, the equilibrium 
equations of forces for porous and dense implants can be expressed as: 

 F = (πR2 + A1 )σ1 + 2πRHτ1  (1) 

 F =πR2σ2 + 2πRHτ2  (2) 

Because the compressive strength at the interface is much larger than its shear strength, the 
values of σ1 similar to σ2, and the added zone A1 are larger, we can obtain τ1«τ2. It means 
that the shear force of porous implants is much smaller that that of dense ones, which is 
beneficial for the stability of the low strength cancellous bone. 

 
Figure 19. Stress analysis of implants 

In current industry, a screw structure is usually adopted to improve the bond strength 
between the bone and implants. The modulus of screw zone is higher than that of cortical 
bone, which has a high trend to cause stress shielding and concentration and thus bone 
absorption [21]. For a porous structure, when the bone tissue grows into the porous 
structure, the bond strength is improved and the modulus of implants is similar to that of 
the surrounding bones. No bone absorption occurs under loading because part of the stress 
can be borne by bone tissues in the pore. In summary, biomimetic style implant No.2, with a 
high modulus in the cortical bone and low modulus-outer and high modulus-interior in the 
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cancellous bone is superior in the stress teansferring. The porous structure can effectively 
reduce the shear force at the bone-implant interface, providing a suitable environment for 
bone tissue ingrowth, which is benefit for the longtime stability of the implants. 

5. Conclusions 

1. The distribution of interface stress is strongly depended on the structure of the 
implants. The bio-mimetic implant No.2 is favorable to transferring the interface stress 
from the cancellous bone and root apex bone to surrounding bones, avoiding stress 
shielding and concentration. 

2. It is demonstrated that the interface stress varies significantly with the change of the 
modulus of the low modulus layer. The area of the high stress zone is reduced, and the 
value of the interface decreases dramatically. When the modulus of the low modulus 
layer is reduced to 10% of the dense value, a uniform interface stress distribution 
without any high stress zone was obtained. 

3. The change of the thickness of low modulus zone affects the stress distribution of 
cancellous bone, while it has no significant influence on cortical bone. With the increase 
of the thickness, the interface stress decreases, especially in the root apex. Moreover, the 
distribution of the interface stress becomes much uniform. 
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1. Introduction 

Computational models of biomechanical systems have been available for over 40 years. In 
the first issue of Journal of Biomechanics from 1968 there exists a paper by Marangoni and 
Glaser looking at the viscoelastic behaviour biological tissue and presented numerical 
results using a discrete model which can be thought of as a predecessor of the modern finite 
element models. In 1971 Rybicki et al published a paper on the mechanical stresses of the 
femur using the finite element method. Since then, published papers on finite element 
modelling increased yearly and now, 40 years later, the finite element method plays an 
important part on the analysis of geometrically complex structures. The hip has been 
researched extensively over these 40 year and numerous papers have been published from 
various different research groups on the mechanical response of the femur and total hip 
arthroplasty under various types of loading. What makes the hip an excellent candidate for 
finite element analysis is the fact that the geometry of the joint is well defined and can be 
easily extracted from CT or MRI scans but also the fact that the joint contact forces and 
musculoskeletal modelling of the hip joint has been extensively researched and measured 
(Bergmann et al 1993) giving a well defined loading condition during gait and other 
activities. The knee has also been researched using the finite element method where the joint 
geometry is well defined, but the loading conditions and the kinematics are more complex. 
Taylor et al (2003) have investigated the performance of total knee replacement using the 
finite element method. 

Modelling of those joints is more complicated than of the hip and knee, due to complex bone 
geometry, soft tissue modelling as well as difficulty determining the physiologically 
relevant loading conditions acting on the joint. 

The wrist and the ankle pose a challenge in biomechanical modelling due to the complex 
interactions between the many bones comprising the joint. Each bone will contribute 
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uniquely to the high range of motion of the joint. The challenge in modelling of the 
multibone models is to capture the mechanism contributing to the stabilization of the joint. 
A stable joint is able to provide three-dimensional equilibrium under external loading which 
can also be interpreted as the ability of a joint to maintain a normal relationship between the 
articulating bones and soft tissue constraints under physiologic loads throughout the whole 
range of motion (Garcia-Elias et al. 1995). This implies that the joints need to be capable of 
distributing loads without generating abnormally high stresses on the articulating surface as 
well as being able to move within the joint’s range of motion. Geometry of the bones also 
plays an important role in joint stability and the concavity or convexity of the articulating 
bones helps the bones to distribute stresses across the joint. 

Work on finite element modelling of the wrist started in the 1990s with the works of Miyake 
et al and Anderson and Daniel who modelled the stresses on the radiocarpal joint using a 
plain strain contact model. That model contained the radius, scaphoid and the lunate as well 
as the extrinsic ligaments and the scapholunate ligaments.  The TFCC was modelled using a 
series of spring elements. Albeit a two-dimensional model, it marked a beginning of further 
research interest in the numerical modelling of the wrist. Miyake et al (1994) published 
around the same time, a finite element model simulating the stress distribution of a 
malunited Colle’s fracture. That same group later published a paper on the stress 
distribution in the carpus following a lunate ceramic replacement for Kienböck’s disease 
(Oda et al 2000). 

Other wrist models were published shortly afterwards and can be summarised in the 
following table. 
 

Author Year Type Modelled 

Miyake et al 1994 Finite element Radius, scaphoid lunate 

Anderson & Daniel 1995, 2005 Finite element Radius, scaphoid, lunate, ulna 

Schuind et al 1995 Rigid body Whole carpus 

Ulrich et al 1999 Finite element Radius, scaphoid, lunate 

Oda et al 2000 Finite element 
Whole carpus excluding 

metacarpals 

Carrigan et al 2003 Finite element 
Whole carpus excluding 

metacarpals 

Nedoma et al 2003 
Mathematical 

model 
Whole carpus 

Gislason et al 2009, 2010 Finite element Whole carpus 

Guo et al 2009 Finite element Whole carpus 

Bajuri et al 2012 Finite element Whole carpus 

Table 1. Previously published finite element models of the wrist 
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Carrigan et al published the first three dimensional wrist model where all the carpal bones were 
incorporated but not the metacarpals. Loading was applied onto the distal aspect of the capitate 
and was 15 N compressive force which is not representative of physiological in vivo loading on 
the wrist. Additionally the scaphoid needed to be constrained using unphysiological constraints 
in order to achieve convergence. In 2009 full three dimensional models of the wrist were 
published by Gislason et al and Guo et al incorporating the distal ends of the radius and ulna, 
all the carpal bones as well as the metacarpals. The Gislason model aimed to simulate load 
transfer behaviour of the wrist during gripping in three different subjects with the wrist in three 
different positions. The loading was determined on a subject specific basis where the forces and 
moments acting on the fingers were measured and by using a biomechanical model, the 
external forces were converted into joint contact forces acting on the metacarpals. The Guo 
model aimed to simulate the carpal bone behaviour after the transverse carpal ligament had 
been excised. The loading applied onto the Guo model was a combined 100 N compressive 
force acting on the the 2nd and 3rd metacarpal and some unphysiological constraints were 
applied to the model. Bajuri et al (2012) created a full three dimensional model simulating the 
effects of rheumatoid arthritis on the stress behaviour of the carpal bones.  

Finite element models of the ankle also exist through the research of Chen et al (2003) and 
Cheung (2004) and although the chapter mainly discusses the creation of a finite element 
model of the wrist, there are many similarities in the methodology of creating a high quality 
finite element model of a multi bone joint, whether it be the wrist or the ankle. 

The fundamental problems that researchers face in the creation of a finite element model of 
the wrist are the loading applied and the soft tissue constraints on the carpus. The wrist are 
a mechanically unstable joint so external constraints, in the form of  ligaments, must be 
applied in order for the carpal bones to return to equilibrium whether they be modelled as 
spring elements or as separate geometrical entities. 

With increased computational power and more enhanced software, it is possible to simulate 
more detailed structures to a higher degree of detail than before. With the current rate of 
software and hardware development, the user will soon become the limiting factor on the 
quality of the finite element models produced.   

2. Image segmenting 

A fully representative geometrical model is integral for the quality of the finite element 
model. With enhanced scanners and software it is possible to achieve high degree of 
resolution for the geometrical model. There exist many different image processing software 
packages that are capable of carrying out image processing and segmenting the scans in 
order to create three dimensional surface such as Mimics (Materialise), Simplware, Amira, 
3D doctor, 3D slicer to name a few. 

Segmentation of the wrist bones requires close attention to details as the geometrical 
features of each carpal bone can be highly irregular and can vary between individuals. 



 
Finite Element Analysis – New Trends and Developments 80 

Using an automated segmentation from the abovementioned software packages sometimes 
can not be enough to capture the full three-dimensional geometry of the bones so manual 
segmentation is at times necessary. The importance of a high quality segmentation can not 
be underestimated in multibone modelling as the congruence of the articulating surfaces 
will play an important role in the contact formulation. Any rough edges on the articulating 
surfaces will cause penetration of nodepoints causing numerical instability and convergence 
problems once the finite element model will be run. It is therefore critical to the success of 
the computational model that the segmentation be carried out in an accurate manner. 
Another reason why the segmentation is the most critical aspect of the modelling, is the fact 
that once the geometry has been constructed and meshed, it is very difficult for the user to 
make any changes to it without starting from the beginning again. 

The plane in which the segmentation should be carried out in, would be the plane with 
the highest resolution, which is primarily the axial plane. Using the sagittal and the 
coronal plane (or the other two planes with lower resolution) can also be beneficial in 
order to fine tune the segmentation in order to get a full three dimensional representation 
of the segmentation. Figure 1 shows segmentation of the carpal bones in axial and coronal 
planes. 

Using the masks can also be a helpful tool in determining the distribution between cortical 
and cancellous bone. By eroding the mask of a given number of pixels, it is possible to create 
a hoop in each slice representing the two stiffness layers. Previously published papers have 
suggested that the thickness of the cortical shell in carpal bones is on average 2.6 mm (Louis 
et al 1995). Figure 2 shows the distribution between cortical and cancellous bone on the 
scans and in the finite element model. 

 
 
 

 
 
 
Figure 1.  Segmentation of carpal bones in two planes 
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Figure 2. Distribution between cortical and cancellous bone in scans and on finite element model 

Most software packages now offer the option of smoothing the three dimensional object. It is 
inevitable that unsmooth edges will occur from the image segmentation and will be more 
visible if some degree of manual segmentation is required. Figure 3 shows an example of 
how the radius bone will look like, before and after smoothing. 
 

 
Figure 3. The radius bone before and after three dimensional smoothing 

The smoothing is easily done within the software packages, but the user must be aware of 
the possible implications of the smoothing as it is possible to be too aggressive in the 
smoothing and therefore Lose volume whilst trying to obtain a good looking picture of the 
bone. Each iteration of the smoothing causes some changes in the volume of the three 
dimensional object although some software packages allow to compensate for the volume 
changes. A possible solution to these volume changes would be to recalculate the mask 
based upon and carry out manual adjustments of the mask and recalculate the three 
dimensional object and creating an iterative cycle until the smoothing will have negligible 
effects on the volume of the bone.  
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3. Meshing 

The quality of the mesh of the finite element model will determine the quality of the 
solution. The process of meshing the three-dimensional objects using an automated meshing 
tool, which many of the image processing softwares packages discussed in previous chapter 
have incorporated, has significantly decreased the time and effort to create high quality 
meshes. The software packages then give the option of importing the meshes into finite 
element programs such as Ansys, Abaqus and others.  

The versatility of the tetrahedral elements have made them popular candidates for the 
automatic meshing tools in the software packages. The tetrahedral elements are capable of 
capturing a high degree of geometric non-linearity and are the most popular elements used 
in biomechanical modelling research today. The problem with the tetrahedral elements is 
the stiffness of the 4 node tetrahedral element which can give too high stress values 
compared to the 10 node tetrahedral element. If using a 4 node tetrahedral element, the user 
must be confident that a sufficient number of elements is being used to capture the 
nonlinear geometry. For the presented models an average of roughly 430 thousand elements 
were used, resulting in an element density of about 10 elements/mm3. 

Hexahedral elements can also be used in biomechanical finite element models. In 2005 
Ramos and Simões compared the performance of first and second order hexahedral 
elements and tetrahedral elements on a femur model and reported that there was little 
difference in the accuracy of the two types of tetrahedral elements. The tetrahedral elements 
were closer to a theoretical result, also calculated than the hexahedral elements. The 
hexahedral elements though showed a higher degree of stability and were less influenced by 
the number of elements. 

As with other finite element models, the mesh quality will play a significant role in the overall 
solution quality. In a multibody analysis needing contact formulation, obtaining high element 
quality at the articular surfaces is important, as cartilage elements are soft and tend to deform to 
a greater extent than the bone elements. Therefore an ill shaped cartilage element, undergoing 
large deformations, is likely to be excessively distorted and cause divergence of the solution. 

With increased computing power, the automatic meshing tool have become extremely 
powerful and have made it possible that the user will not need to spend much time on 
producing a high quality mesh, making it possible to model larger numbers of models and 
incorporating subject specific models.   

4. Creation of the finite element model 

During the creation of the finite element model, the best practice is to import each carpal 
bone individually allowing the user to keep control over whole assembly. Most of the image 
processing software packages will take into account the coordinates of individual pixels 
from the MRI or CT scans. Therefore the position of each carpal bone will be preserved after 
being imported into the finite element software. 
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4.1. Cartilage modelling 

Modelling the cartilage is one of the greatest challenges faced by researchers working on joint 
modelling. Cartilage is not visible from CT scans, but can be identified using MRI scans. In 
clinical 3 Tesla scans it can be difficult to determine exactly where the cartilage boundary layer 
is located in three-dimensional space, making it difficult to create the cartilage layer via 
masking of the scans. In doing so, the researcher will need to interpolate the shape of the 
cartilage layer often resulting in an irregular shape causing meshing problems. Another aspect 
regarding incorporating the cartilage layer into the bone model is the scattering of stiff cortical 
bone elements and soft cartilage elements. That could cause numerical instabilities in the 
solution phase. A more practical approach is to extrude the external surfaces of the bones at 
the articulation and creating a solid volume layer representing the cartilage. Using this method 
will give a distinct boundary between the bone and the cartilage layer. Another possibility 
would be to extrude the elements directly creating a layer of wedge elements. 

4.2. Material modelling 

4.2.1. Bone 

Most finite element models of joints have used elastic material properties for both the cortical 
shell and for the cancellous bone. Bone is a viscoelastic material and its properties will depend 
on the strain rate. All published multibone joint finite element models have focussed on a quasi 
static analysis of the joint and therefore applying the loads slowly. The material properties used 
for bone material can be seen in Table 2 and are obtained from Rho et al (1997). 
 

Bone type 
Young’s 

modulus [MPa] 
Poisson’s ratio Density [g/cm3]

Ultimate tensile 
strength [MPa] 

Cortical 17*103-19*103 0.25 2000 150 
Cancellous 100-200 0.30 1500 20 

Table 2. Bone material properties 

The simplified material values presented in Table 2 will give an idea about the parameters 
that can be applied to a macroscopical finite element model of a bone. A more refined 
material model incorporating bone mineral density, the orthotropical behaviour and 
viscoelastic properties would add a substantial amount of complexity to the model. 

4.2.2. Cartilage 

Many finite element studies have simulated the mechanical properties of the articular 
cartilage as elastic material which can be subjected to large errors. Articular cartilage is a 
complex material that has the properties of a fluid and a solid and has been researched 
extensively in the literature. Much of that research hasn’t been applied into the finite 
element modelling of multibody joints, although many finite element models exist of 
cartilage only focussing on the material behaviour. Attempts have been made (Gislason 10 
and Bajuri 12) to incorporate the non-linearities of the articular cartilage behaviour into the 
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finite element models, by using Mooney-Rivlin hyper-elastic material properties using the 
material data obtained from Li et al (2007). 

4.2.3. Ligaments 

Evaluating the material properties of ligaments pose a great challenge to researchers in 
multibone joint modelling as they operate only in tension and show viscoelastic material 
properties. In tension the ligaments show a non-linear characteristic at the initial stages of 
the load application (usually referred to as the toe region) but once a given reference strain 
or extension has been exceeded, the ligaments respond in a linear manner to loading. The 
reason for the non linearities in the toe region is due to the fiber orientation within the 
ligaments. The collagen fibers are placed in a ”wavy” type of fashion and the initial load 
applied to the ligament goes to straighten the fibers and then they can be stretched in a 
linear fashion. Another reason is that the fiber lengths within the ligament differ and the 
initial loading goes to pull the fibers to the same length (Amis 1985). After the linear region 
then the ligaments follow another period of nonlinear behaviour where the stiffness 
decreases due to fibre failure until it reaches complete failure 

The extrinsic ligaments are generally stiffer but weaker than the intrinsic ligaments which 
are elastic and strong. In 1991, Logan and Nowak carried out a study where two extrinsic 
ligaments (the radiocapitate (RC) and the radiolunate (RL)) and two intrinsic ligaments (the 
scapholunate (SL) and the lunotriquetrum (LT)) were tested to demonstrate the 
biomechanical difference between the two types of ligaments. Table 3 shows the findings 
from the study from Logan and Nowak. 
 

Rate SL [N] LT [N] RL [N] RC [N] 

1 mm/min 197.1 ± 35.5 241.1 ± 41.8 50.8 ± 14.8 84.3 ± 16.0 

100 mm/min 232.6 ± 10.9 353.7 ± 69.2 107.2 ± 14.5 151.6 ± 23.0 

Table 3. Results from Logan and Nowak on ligament material properties 

From the table it can be seen that the loading rate primarily affects the extrinsic ligaments, 
making them stiffer and stronger under a rapid loading. This mechanism helps preventing 
ligament injury during fall, as the extrinsic ligaments anchor the mobile carpal bones to the 
radius and the ulna.  

Tensile experiments on ligaments are difficult to carry out in practice. Wrist ligaments in 
particular are too short to be tested on their own, so the attaching bones are dissected along 
with the ligament and are held rigid in the tensile machine. It can be difficult to compare 
ligament tensile studies because they can be performed under different conditions which 
can have profound effects on the experimental results on which modellers of the joint rely. 
Other material studies have been carried out and published in the literature on wrist 
ligament properties (Berger 1997, Bettinger 1999). 
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4.2.4. Contact setup 

Once the bones have all been incorporated into the finite element software and assembled 
together bone by bone and cartilage constructed, the contact formulation between the bones 
needs to be formulated. A surface-to-surface contact is most common method defining the 
contact between the bones, but node-to-surface configuration can also be implemented. 
Most finite element models will allow the user different contact models, such as the 
Lagrange method, the penalty method etc. The availability of these different contact models 
can be limited to the type of solution algorithm used. Additionally the user can determine 
the stiffness of the contact, but usually as “hard contact” is applied which is defined by 

 

Where p is the contact pressure, and h is the over closure between the two surfaces. Using 
kinematic contact method is generally preferred over the penalty contact as it introduces an 
additional stiffness to the system. Frictionless contact properties or friction using a low 
friction coefficient should also implemented on the articulating surfaces. By using 
frictionless contact, it is ensured that no shear stresses occur at the articulations.  

It has been reported in the literature (Kauer 1986) that there is little or no movement 
between certain articulations, such as the articulations between the bones in the distal row 
of the wrist and the metacarpals (in the carpometacarpal joint). For those joints, it is possible 
to use a tie constraint so that no relative motion occurs between the two bones. That will 
help to simplify the model. The model can be seen in Figure 4 

 
Figure 4. Finite element model 



 
Finite Element Analysis – New Trends and Developments 86 

5. Soft tissue modelling 

Due to the high mobility of joints such as the wrist and the ankle, they need to be 
constrained through a large and complicated set of ligaments to ensure structural integrity 
of the joint. Without any structural contribution from the ligaments, any finite model of the 
wrist or the ankle would diverge. As previously discussed then the material properties of 
each ligament will vary depending on its function and location.  

The geometry of the wrist ligaments is complex and difficult to incorporate into a finite 
element model. Some ligaments wrap around the carpal bones without attaching to them, 
thus providing additional dorsal/volar constraints on the carpus. This can be seen for the 
dorsal radiotriquetral ligament which originates at the distal end of the radius and attaches 
to the proximal pole of the triquetrum, overlapping the lunate and adding to the transverse 
stability of the carpus.  

Previous models have incorporated the ligaments as one dimensional spring elements 
(Carrigan, Gislason, Bajuri), which is the simplest approach of creating the geometry. 
Although this method will give a relatively good representation regarding the overall 
constraints of the carpus, the problem will persist that the spring elements will only constrain 
the carpal bones in the direction of the springs. Using non-linear springs, the user must make 
sure that the springs do not take any tensile forces. The literature gives a range of ultimate 
strength and strain values (Berger 1999, Nowak 1991) for various ligaments which can be used 
to recreate a non-linear stress-strain or force-displacement curve in the form of 

 

Where F is the ligament force, x is the strain and α, a and b are constants. The force values 
can be converted into stress, by using measurements of the cross sectional areas of the 
ligaments as presented by by Feipel et al (1998).  

Another possibility is to model the ligament as three dimensional surfaces using two 
dimensional elements, by identifying the insertion node points and creating the external 
lines of the ligament using splines, finally an area is defined from the lines and meshed 
using shell elements. Modelling the material behaviour can be modelled by implementing 
stress-strain curves for each ligament using hyperelastic material properties. The challenge 
in soft tissue modelling, beside the geometrical representation of the ligaments, is not over 
or under constraining the model. A figure of the model where ligaments are represented as 
three dimensional surfaces can be seen in Figure 5. 

In a pilot study carried out on ligament modelling, it was seen that by using the elastic 
springs, there was a significant translation of the carpal bones, which decreased drastically 
by assuming linear elastic material properties of the ligaments. That over-constrained the 
system to a great extent and allowed extremely little bone movement under loading. 
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Modelling the ligaments as hyperelastic resulted in larger motion of the ligaments than 
allowed by using the elastic properties, but less using the non-linear springs. The springs are 
most probably under- constraining the whole system, but using three dimensional ligaments 
with elastic material properties are probably over-constraining the system. More research 
needs to be carried out on the soft tissue properties of multibone joints and the constraining 
effects various modelling techniques will have on the overall system. 

 
Figure 5. Ligaments modelled as three dimensional surfaces. 

6. Modelling of surgical procedures 

With a computational model of the wrist in place, analysis of surgical procedures such as 
arthrodesis and arthroplasty can be carried out. Arthrodesis is a procedure that fuses 
together joints to reduce mobility. In the wrist and the ankle there are many individual 
joints and should just a single joint be fused, the procedure is called partial arthrodesis and a 
total arthrodesis if the whole joint is fused. This is a recognised surgical procedure to reduce 
pain and increase stability in the arthritic wrist. Simulating such procedures can be done 
using a finite element model, where instead of applying contact formulation a tie constraint 
is applied at the articulating joints. That will treat the two articulating bones as a single unit, 
not allowing any relative movement between them. After such a procedure it can be seen 
that the overall load transfer will be altered as additional constraints have been introduced 
to the system. This can be seen in particular on radiolunate fusion where high joint contact 
forces were seen on the capitolunate joint. Figure 6 shows the changes in load transfer in the 
midcarpal joint following radiolunate (RL), radioscaphoid (RS) and radioscapholunate (RSL) 
fusion compared to the untreated wrist 



 
Finite Element Analysis – New Trends and Developments 88 

 

 
 

Figure 6. Changes in joint contact forces following a partial wrist arthrodesis. 

Using the finite element method can be a useful tool to predict a possible surgical outcome, 
as can be seen with the radiolunate fusion, an extremely high force can be seen acting on the 
capitolunate joint. This can be explained by the fact that during gripping (and most other 
tasks) the thumb will be angled in such a way that the joint contact forces acting on the first 
carpometacarpal joint will tend to push the carpus ulnarly. This can be seen in Figure 4 how 
the thumb forces tend to ulnarly translate. With the lunate anchored to the radius and the 
capitate free to translate, it can be seen that under such ulnarly directed forces the capitate 
will be excessively constrained by the lunate thus causing such high joint contact forces. It 
can be seen that by fusing both the radius and the lunate, the model predicts more evenly 
distributed load through the midcarpal joints, however at the expense of a smaller range of 
motion.  

Finite element models on total hip and knee arthroplasty have been prominent in the 
literature and extensive research has been carried out on the stress distribution in the femur 
following a total hip arthroplasty and has contributed to the clinical success of the joint 
replacements. Little has been written about total wrist arthroplasty and the effects it has on 
the distribution of load within the wrist. Grosland et al have reported on wrist implants in 
terms of design and carried out ex-vivo analysis, but a model is missing that captures a full 
three dimensional features of the implanted wrist. A preliminary model was created of the 
implanted wrist under physiological loading. It showed how the majority of the load was 
transmitted through the implant and onto the radius. The finite element model can be seen 
in Figure 7. 
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Figure 7. Finite element model of a total wrist arthroplasty 

The stresses on the carpal bones and the implant can be seen in Figure 8 

 

 
Figure 8. Load transmission through the implanted wrist 
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From a finite element perspective, modelling a total wrist arthroplasty is a simpler task than 
modelling the healthy wrist as a few of the carpal bones will be removed during the 
procedure which will decrease the number of contact surfaces. However problems 
regarding the fixation of the implant into the radius and the distal row will arise as well as 
contact between the proximal and distal part. In the pilot study, it was assumed that the 
implant was fully fixed in the radius as well as the distal component fully tied to the carpal 
bones in the distal row. There are many different types of wrist implants commercially 
available and the personal preference of the surgeon will in many cases determine which 
implant will be used. A finite element model will allow to virtually implant a prosthesis into 
the carpus and calculate the stresses under static loading. The main problem with carrying 
out such experiments is that the size and the location of the implant could be erroneous 
which will have a large impact on the overall solution.  

The finite element method can be used as a tool to evaluate the different implant designs 
available on the market. Given the high failure rate of the implants, there is a demand to 
investigate closer the effects that a total wrist arthroplasty has on the overall load transfer 
through the wrist and what can be done to design for longevity and functionality of the 
implant. 

7. Loading conditions 
Applying in vivo loading conditions on the finite element model, is an extremely 
challenging aspect of the modelling, especially since there has been very little written about 
the biomechanical modelling of the wrist. Most studies have applied arbitrary loading 
conditions, 15 N compressive force acting on the distal end of the capitate (Carrigan et al), a 
combined compressive load of 100 N applied to the 2nd and 3rd metacarpal (Guo et al) and a 
combined 1000 N load acting on the scaphoid and lunate (Ulrich et al). The load cases are 
better defined when dealing with joints in the lower limb and the fundamental question, 
researchers must ask themselves is “what activity is characteristic for loading on the upper 
limb?”. The answer to that is not clear cut and can range from compressive forces acting on 
the proximal part of the palm with subject trying to push an object to forces action on the 
fingers via gripping. There are many grip patterns defined in the literature (chuck grip, 
power grip, pinch grip etc.) which all contribute in a unique manner to the loading 
distribution through the fingers. 

For the analysis presented in this chapter a grip pattern, seen in Figure 9 was used.  

The gripping forces were obtained through a biomechanical study where the gripping 
strength of 50 subjects were measured using five 6-degrees of freedom force transducer 
(Nano 25-E and Nano 17, ATI Industrial Automation Inc, USA). Simultaneous collection of 
position data using an 8 camera motion capture system (Vicon, Oxford Metrics Ltd) was 
carried out to capture both the kinetic and the kinematic data. The external forces were 
converted in to joint contact forces acting on the metacarpals using a biomechanical model 
as described by Fowler and Nicol (2000). More detailed analysis on execution of the 
biomechanical trials can be found in Gislason et al (2009). The wrist models created were 
subject specific and the joint contact forces applied can be seen in Table 4 
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Figure 9. Grip pattern used for the analysis 

 

 Subject 1 Subject 2 Subject 3 

 Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N] Fx [N] Fy [N] Fz [N] 

Digit 1 144.1 -545.1 -44.6 80.8 -536.1 -8.4 139.7 -452.2 -12.0 

Digit 2 253.2 -270.7 141.8 84.1 -294.2 10.5 110.7 -156.8 87.4 

Digit 3 348.5 -274.4 172.8 135.1 -126.2 72.8 125.6 -237.7 98.9 

Digit 4 117.3 -236.1 29.2 67.0 -94.0 54.7 113.7 -198.0 78.5 

Digit 5 111.1 -200.0 -3.8 42.5 -103.0 10.6 53.5 -160.5 19.3 

Table 4. Internal loading on the digits 

Where  

 Positive x-direction denotes ulnar direction 
 Positive y direction denotes distal direction 
 Positive z-direction denotes dorsal direction 

As can be seen from Table 4, the contact forces were primarily directed, ulnarly, proximally 
and dorsally. The joint contact forces were applied to the model as nodal forces where a 
subset of nodes was chosen and the total force acting on each metacarpal was divided 
between the nodes.  

The proximal ends of the radius and ulna were kept fixed and compressive forces applied to 
the distal end of the metacarpals. 
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Many studies have applied arbitrary boundary conditions onto the wrist, which will not 
give information about the possible in-vivo behaviour of the carpal bones under loading. By 
applying physiologically relevant loading conditions, it is possible to determine in more 
detail the mechanical features within the wrist that control the loading. Due to the extensive 
research carried out on the biomechanics of the hip and knee, modellers are able to apply 
physiologically relevant loading conditions onto their models and predict in-vivo loading. 

8. Solution algorithms 

For a multibody computational models, it is virtually impossible to solve an implicit model 
where convergence needs to be obtained for each contact surface for each loadstep. High 
residual forces at the boundaries of the contact surfaces are primarily seen that cause the 
solution to diverge. Damping can be introduced between the bones, which can be released 
gradually as the load step progresses and will be fully released when all of the loading has 
been applied. Experiments showed that the load step progressed well at the initial stages of the 
load step, but once the effects of the damping became less, cutbacks were seen in the solution 
process which increased as the solution reached towards the end of the load step. The solution 
never will reach the end of the loadstep. This is a classical behaviour of the proper contact not 
being established between the bones. It has been previously demonstrated in the literature 
how nonlinearities can cause divergence using the implicit code (Harewood 2007). 

Most multibody analyses use the explicit algorithm to solve the model. The explicit 
algorithm assumes dynamic behaviour of the model and no convergence checks are carried 
out on the contact surfaces, which makes the explicit algorithm extremely robust in solving 
such a multi body system. The solution for time step t +Δt is based on the status of the 
model at the previous time step, t. In contrast for the implicit code the solution is based on 
the same time step. The time step in the explicit analysis is determined from the 
characteristic element length and material properties and is given by 

�� � � 2
���� 

where ωmax is the maximum eigenvalue in the system. Generally the time steps, Δt, are very 
small, resulting in long run times. The criteria for assuming a quasi static solution, is that the 
kinetic energy of the system does not exceed 5% of the strain energy.  

9. Results 

9.1. Finite element results 

The results from the finite element model have shown that anatomical features play an 
integral role in the stress distribution through the wrist and therefore it is difficult to 
generalise about the results of a single standard model. However due to the complexity and 
time commitment creating the finite element models, it is not possible to generate a large 
cohort of models. 
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In the finite element models, the largest stress was seen at the in the cortical shell and were 
on average a magnitude higher than the stresses in the cancellous bone. On average the 
stresses in the cortical shell were around 18.6 MPa, and in the cancellous bone they were 
around 1.1 MPa. The stress distribution for one of the model can be seen in Figure 10 

 
Figure 10. von Mises stresses in a single model 

Ligaments opposing ulnar translation were more active than others in the model, in 
particular the dorsal radiotriquetral ligament which showed high degree of force going 
through it. That result is in agreement with the theoretical findings of Garcia-Elias (1995) 
who stated that in order to maintain stability, the dorsal radiotriquetral ligament would 
play an integral part in stabilisation of the carpus during gripping.  

The force through the radius and ulna was distributed so that majority of the load was taken 
by the radius, ranging from 79-93% which is in agreement with the findings of Palmer and 
Werner (1984) who measured the load distribution between the two forearm bones using a 
load cell and reported that 80% of the loading was transmitted through the radius.  

9.2. Validation 

Validation is an important procedure to verify that the assumptions used for the 
computational model are correct. In 2005, guidelines were written by Viceconti regarding 
the methodology of producing a clinically relevant finite element model. There two 
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important assessment tools for finite element models were introduced, verification and 
validation. The term verification is used to check numerical accuracy, that is how well the 
underlying equations are solved. To verify the model, the user can check that forces at all 
reactions sum up to give the input forces. Another example of verification can be seen when 
energy values are compared to check whether the solution is portraying quasi-static 
behaviour. The term validation is used to assess how well the underlying equations describe 
the physical phenomena. Validation must be carried out in the lab to test a specimen under 
the same conditions used in the computational model. Computational models are capable of 
creating complex load cases, so through validation some simplification generally must be 
done, which then can then be re-created through the computational model. 

Validation of the computational model was carried out through two separate experiments. 
One measured the strain on the radius and ulnar with the carpus loaded through pull of the 
tendons (MacLeod 2007). The second measured the joint contact pressure of the 
radioscaphoid joint using a pressure sensitive film. Setup of the two experiments can be 
seen in Figure 11. 

It was measured using the strain gauges on the radius and ulna that the load through the 
radius is around 70% and the remaining 30% through the ulna. These values are slightly 
lower than what the finite element model was predicting, but both recognise the radius as 
the main load bearing structure of the forearm.  

The measurements of the contact pressure on the radioscaphoid joint showed that the joint 
contact pressure ranged between 4-5 MPa under a 600 N compressive load which is in 
agreement with the findings of the finite element model which predicted 6.5 MPa contact 
pressure on the joint under the same loading conditions.  

 

 
 

Figure 11. Validation of the finite element model 
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10. Conclusions 

Creating a finite element model of the wrist and other multibody joints is a complex task 
where many different aspects of the modelling need to be addressed. The most important 
aspect contributing to a high quality finite element model is the construction of high 
integrity geometrical model and the soft tissue modelling. High integrity geometrical model 
of the articulating surfaces will aid the contact analysis, as a high degree of incongruence of 
the articulating surfaces can lead to element distortion, especially on soft cartilage elements. 
The external soft tissue constraints are important in order to maintain mechanical 
equilibrium as well as allowing the bones to translate and rotate under loading. These two 
factors will play an integral role in the success of the finite element model. 

Finite element models of such complex joints such as the wrist and the ankle are likely to 
become more prominent in the future as computational power and modelling software 
quality increases. That will make modellers able to create models incorporation a higher 
degree of detail than previously has been published.  

It is inevitable that errors are introduced in such complex models. The errors can either be 
within the control of the modeller or without. This chapter has discussed the procedures 
that the modeller can carry out to minimise the sources of errors in the model. However the 
modeller will have little control over errors that can be generated through using previously 
published material properties and geometrical representation of the ligaments and soft 
tissue.  

Using the finite element method predicting the load transfer through the healthy and the 
pathological wrist can give clinicians important information regarding the choice of 
treatment  which can lead to higher procedure success rates and improve the quality of life 
for many patients. 
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1. Introduction 
Computer-aided analysis of field distribution for evaluating electromagnetic device or 
component performance has become the most advantageous way of design. Analytical 
methods have limited uses and experimental methods are time intensive and expensive 
(Morozionkov et al., 2008). 

The problems of magnetic fields calculation are aimed at determining the value of one or 
more unknown functions for the field considered, such as magnetic field intensity, magnetic 
flux density, magnetic scalar potential and magnetic vector potential. As the field has 
infinite points, the function values are in infinite number. 

Physical phenomena of electromagnetic nature are described by Maxwell’s equations from 
the mathematical point of view. These are differential equations with the given boundary 
conditions. By means of them, the exact solution of the problem is obtained. In this way, the 
value of function or functions in any point of the studied range is calculated. This represents 
the analytical way for solving the problems. 

Analytical methods (conformable representation method, method of separation of the 
variables, Green function method) are applied to solve relatively simple problems. Problems 
which occur in practice are often complex concerning the geometric construction, material 
heterogeneity, loading conditions, boundary conditions, so that the integration of 
differential equations is difficult or sometimes impossible. In this case, the analytical 
solution can be carried out only by creating a simplified model so that the integration of 
differential equations is possible. Therefore, an exact solution for a simplified model can be 
obtained (Gârbea, 1990). 

It is sometimes preferable to obtain, instead of the exact solution of the simplified model, an 
approximate solution of the real problem. Approximate solutions which are obtained by 
numerical methods reflect better the reality than exact solutions of a simplified model. 
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The software package ANSYS can be used for investigation of the magnetic field 
distribution (the magnetic flux density, the magnetic field intensity and the magnetic vector 
potential) and basic electromagnetic characteristics (inductance and electromagnetic force). 
A typical magnetic field problem is described by defining the geometry, material properties, 
currents, boundary conditions, and the field system equations. The computer requires the 
input dates, the numerical solution of the field equation and output of desired parameters. If 
the values are found unsatisfactory, the design modified and parameters are recalculated. 
The process is repeated until optimum values for the design parameters are obtained. 

The ANSYS program is based on the finite element method (FEM) for solving Maxwell’s 
equations and can be used for electromagnetic field modeling, where the field is 
electrostatics, magnetostatics, eddy currents, time-invariant or time-harmonic and 
permanent magnets (ANSYS Documentation). 

The finite elements method assures sufficient accuracy of electromagnetic field computation 
and very good flexibility when geometry is modeled and field sources are loaded. 

2. The fundamental relations of the stationary magnetic field 

In this section, we discuss the particular forms of the electromagnetic field theory laws for 
the magnetic stationary field. We consider the models of the magnetic induction versus 
magnetic field intensity (B-H) relation, passing conditions through discontinuity surfaces, 
the enunciation of stationary magnetic field (the sources of the field, boundary conditions), 
the enunciation of scalar magnetic potential - magnetostatic field problems (Dirichlet 
conditions, Neumann conditions) and the enunciations using the magnetic vector potential 
(stationary magnetic field problems). The general formulation of the uniqueness conditions 
gets particular forms, adapted to some geometrical configurations (plane-parallel fields, 
with rotation symmetry, etc.).  

Depending on the relation between the magnetic induction and the intensity of the magnetic 
field, a few types of materials are distinguished, the most important being linear and 
isotropic materials, linear and non-isotropic materials, linear and non-isotropic materials, 
non-linear and isotropic materials, without permanent magnetization, non-linear and non-
isotropic materials, materials with hysteresis. 

Non-linear and isotropic materials, without permanent magnetization, are ferromagnetic 
materials, which are frequently used in the production of electric equipment. 

2.1. Particular forms of the electromagnetic field theory laws for the stationary 
magnetic field 

The stationary magnetic field is established by non-moving, permanently magnetized 
bodies and by non-moving connecting wires crossed by direct current (Mocanu, 1981). 
Fundamental magnetic field relationships result by customizing the general laws and 
material laws of the electromagnetic field in the following conditions: bodies are non-
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moving 0v 
  and the electric and magnetic quantities are invariable in time, 

 
0

.
t





. A 

stationary magnetic field in a conducting domain satisfies the following system of 
equations: 

- the magnetic circuit law (Ampère’s theorem) 

 rot H J
 

 (1) 

- the magnetic flux law (local form) 

 0div B 


 (2) 

- the connection law in magnetic field  

  0B H M 
  

 (3) 

- the temporary magnetization law 

  t tM M H
  

. (4) 

Here, H


 is the magnetic field intensity, J


 is the total current density, B


 is the magnetic 
induction, quantity tM


 is called the temporary magnetization of the material and 

7 1
0 4 10 H m         is the vacuum permeability. 

Magnetostatics is the branch in electromagnetism that studies the stationary magnetic states 
that do not accompany the conduction electric currents. This magnetic field is produced by 
permanent magnets ( 0J 


; 0v 
 ). 

2.2. Models for the B-H relation 

Depending on the relation between the magnetic induction B


 and the magnetic field 
intensity H


, a few types of materials are distinguished (Andrei et al. 2012).  

2.2.1. Linear and isotropic materials 

The most important type of materials consists of the linear and isotropic materials, in which: 

 0 p pB H M H I     
    

 (5) 

where pM


 is called the permanent magnetization and pI


is the magnetic polarization. This 
category includes the materials for which the temporary magnetization law is (Răduleţ, 
1975) : 

 t mM H
 

 (6) 
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where m  is called the magnetic susceptibility, representing a dimensionless and constant 
scalar quantity. 

In the absence of permanent magnetization ( pM


=0, pI


 =0) the relation becomes:  

 B H
 

 (7) 

 H B
 

. (8) 

The quantity   is the magnetic permeability and 1


  is called the reluctivity. The B


 and 
H


 vectors are collinear. 

2.2.2. Linear and non-isotropic materials 

In these materials, the B


 and H


vectors are not, generally, collinear, but the connection 
between them remains linear. 

For some crystalline materials, the dependence between tM


 and H


 is linear, but each 
component of the temporary magnetization depends on all components of the magnetic field. 

The relation between them can be written, in the absence of permanent magnetization, 
under the form: 

 B H
 

 (9) 

where   is a tensor. In Cartesian coordinates, the relation becomes: 

 
xx xy xzx x

y yx yy yz y

z zx zy zz z

B H
B H

B H

  

  

  

    
    
     
    
     

 (10) 

The permittivity matrix is symmetrical ( ij ji  ) and positively defined. In these 
conditions, there are three orthogonal directions, called main directions, with respect to 
which the relation between B  and H  becomes (Hănţilă, 2004): 

 
1 1 1

2 2 2

3 3 3

0 0
0 0
0 0

B H
B H
B H






     
           
          

 (11) 

2.2.3. Non-linear and isotropic materials, without permanent magnetization 

In these materials, the B


 and H


 vectors are collinear, but the relation between them is non-
linear: 

   3 3:B f H f R R  . (12) 
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This is, usually, the behavior of ferromagnetic materials, which are frequently used in the 
production of electric equipment. 

2.2.4. Hysteresis materials 

In hysteresis materials, the instantaneous value of the magnetic induction depends not only 
on the value of the intensity of the magnetic field, but also on the previous evolution of 
these quantities.  

Assume that the magnetic field intensity is gradually reduced after following the first 
magnetization curve OA, corresponding to a value +Hmax (Figure 1).  

 
Figure 1. The B-H relation for a hysteresis material 

The curve obtained during the magnetic field intensity reduction differs from the first 
magnetization curve. When H is null, the magnetic induction has a value different from zero 
called the residual magnetic induction: 

 0r rB M   (13) 

where Mr is the residual magnetization. 

For further reduction of the magnetic induction, the sense of magnetic field intensity is 
changed (as well as the sense of magnetization current), with respect to the initial one. 

The magnetic field intensity necessary to compensate the magnetic induction is called the 
coercitive field Hc. Increasing the field in the contrary sense to –Hmax and then returning to 
the values of H up to Hmax, the hysteresis cycle is obtained. By repeating several times the 
magnetization cycle between the limits +Hmax and -Hmax, a closed curve and a stabilized cycle 
are obtained, with the reversal points A and A' symmetrical with respect to the origin of the 
coordinate system. 

It is important to mention that in the case of a periodic magnetization, the existence of the 
hysteresis cycle leads to energy losses that occur in the ferromagnetic core as heat. These 
energy losses are called the hysteresis iron losses (Şora, 1982).  
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2.2.5. Non-linear and non-isotropic materials 

In these materials, the B


 and H


 vectors are not, generally, collinear and the relation 
between them is non-linear. 

2.3. The magnetic vector potential 

The magnetic vector potential is a vector field, which does not have a specific physical 
meaning. Its utilization allows simplification of the mathematical approach of many 
physical problems. 

The condition 0div B 


, which expresses the continuity of the magnetic flux, is identically 
satisfied if the B


 vector is expressed under the form of an auxiliary vector A


, called the 

magnetic potential vector:  

 B rot A
 

  (14) 

The potential vector A


 is univocally determined only after 0div A 


 is chosen. The choice 
of the value for B


 is called the calibration of the vector potential and the respective 

condition is called calibration condition. Depending on the context, one can adopt 
convenient calibration conditions. One of the most used calibration conditions is the Coulomb 
condition:  

 0div A 


 (15) 

If the calculation of the magnetic flux through an open surface is expressed by means of 
magnetic induction, then the magnetic vector potential must be taken into account by the 
Stokes' theorem (Moraru, 2002). 

The magnetic flux through a surface SΓ bounded by a contour Γ can be computed as a contour 
integral of the vector potential: 

 S
S S

BdA rot AdA Adl


  

     
    

  (16) 

The magnetic flux through the surface SΓ is equal to the line integral of the magnetic vector 
potential along the contour Γ on which this surface is supported. Equation (16) relieves the 
fact that the value of a magnetic flux does not depend on the surface shape, as it is 
computed only by considering the contour on which that surface is supported. Let us 
consider a material with linear magnetic properties and without permanent magnetization, 
for which B H

 
. From the magnetic circuit law, it results that (Hănţilă, 2004): 

 1rot H rot rot A J

 

  
 

  
 (17)  

In linear and homogeneous mediums, where µ is constant:  
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 rotrot A J graddivA A   
   

 (18)  

the magnetic vector potential verifies the Poisson’s vector equation: 

 A J  
 

 (19) 

and if 0J 


, it verifies the Laplace’s equation: 

 0A 


 (20) 

Solving Equations (19) and (20) requires the boundary condition to be known. The vector 
equations are divided after the Cartesian coordinates in scalar equations of Poisson type 

 x x y y z zA J A J A J            (21) 

respectively, scalar equations of Laplace type 

 0 0 0x y zA A A      . (22) 

The integral of Equation (19) in all space is determined by using the scalar forms (21). 

The magnetic vector potential of the filiform circuit with current i is expressed as: 

 d ,
4

i l
R


 


 A




  (23)  

dl


 is line unit vector. 

 

 
Figure 2. Biot–Savart–Laplace relation for filiform conductors  

The magnetic field intensity is (Figure 2): 

 3
rot d .

4
i l

R  


  

A RH
 

  (24) 

The Biot-Savart-Laplace relation becomes: 

 34 D

J RB
R







 

 
 (25) 
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2.4. The scalar magnetic potential 

The magnetic field is not irrotational for a circuit with current flow, therefore this can be 
deduced fom a scalar potential. But the rotor of magnetic field intensity is equal to zero if 
there is no current which flows, 0J 


. If there is no conductor in the considered space, the 

following equation is available (Mocanu, 1981): 

 0rot H 


 (26) 

Therefore, H


 can be deduced by a scalar potential: 

 mH gradV 


 (27) 

where is mV  is the scalar magnetic potential. 

In the presence of some conductors crossed by electric current, the scalar magnetic potential 
is not uniform: 

 
2 2 2

1 2
1 1 1

0m m mHdl i V dl dV V V          


 (28) 

For uniformity, a cut can be introduced an arbitrary surface bounded by the contour crossed 
by current (Figure 3). 

 
Figure 3. Cut in order to uniform the scalar magnetic potential  

In the absence of permanently magnetized bodies, the partial derivative equation of the 
scalar magnetic potential is deducted from the magnetic flux law: 

  0 0m mB V divB div V        
 

 (29) 

In homogeneous materials (where =cost), the Laplace equation is obtained: 

 0mV   (30) 

This expression is used to determine the scalar magnetic potential of the magnetic field 
produced by a filiform circuit crossed by electric current.  

Applying the magnetic circuit law for a closed curve which surrounds the conductor, the 
scalar magnetic potential is written as: 
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4m
iV


   (31) 

where  is the solid angle under which the  contour is seen from the point where the field 
is calculated: 

 3
S

R dS
R



    (32) 

In this case, the magnetic field intensity H


is: 

 1
4

H i


  


 (33) 

2.5. Energy of the stationary magnetic field 

Magnetic energy is located in a magnetic field with a volume density mw whose expression 
is (Şora, 1982): 

 
0

B
mw HdB 

 
 (34) 

If the medium is linear (µ=constant), then:  

  
2

2
HHdB Hd H d 

 
    

 
 (35) 

In this case, the following expressions are obtained: 

 
2 2

2 2 2m
H B HBw 


  

 
 (36) 

 1
2m v

W HBdv 
 

 (37) 

Assuming that inside the field limited by a closed surface Σ and considering an isotropic 
medium, the magnetic energy can be written as: 

  div A H HrotA ArotH  
     

 (38) 

taking into account the vector operation. 

In other words, the magnetic energy is: 

  1 1 1
2 2 2m

v v v

W HrotAdv div A H dv AJdv     
    

 (39) 
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Applying the Gauss-Ostrogradski's theorem to the first term on the right-hand side, the 
following expression is obtained: 

  1 1
2 2m

v

W A H ds AJdv


   
     (40) 

2.6. Generalized forces in the stationary magnetic field 

In the case of the stationary magnetic field, the general expressions of the generalized forces 
Xk associated to a generalized coordinate xk are given by one of the two generalized forces 
theorems in a stationary magnetic field (Timotin, 1970): 

 em
k

k ct

W
X

x


 
  

  
 (41) 

 em
k

k i ct

W
X

x


 
  

  
 (42) 

in which the transformations are supposed to be done at constant fluxes on any surface, 
respectively to constant currents through any conducting contour. 

2.7. Uniqueness theorems of the solutions of the equations of stationary and 
magnetostatic magnetic fields 

2.7.1. The enunciation of stationary and magnetostatic magnetic field 

In stationary magnetic field problems, the electric currents distribution (the J


field) is 
supposed to be known (for example, by solving a stationary electrokinetic stationary regime, 
in the case of massive conductors, or by indicating the value of the current through the coils 
in the domain that is being studied). 

In magnetostatic field problems, the sources of the field are represented by the distribution 
of the permanent magnetization ( pM


 or the permanent magnetic polarization), which are 

supposed to be known (Andrei et al, 2012). 

In conformity to the general uniqueness theorem of the solutions of the stationary magnetic 
fields equations, the solution of the electromagnetic field equations in a domain D bounded 
by closed surface  =SHSB is uniquely determined by the following uniqueness conditions: 

The electric currents distribution in the domain: 

   ;J P P D   (43) 

The distribution of the permanent magnetization: 

   ;pM P P D   (44)  
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Boundary conditions, that can be of the following types (Figure 4): 

- tangent component of the magnetic field intensity on the surface SH: 

     ;tH P f p P S    (45) 

- normal component of the magnetic induction on the surface SB: 

     ;nB P g p P S    (46) 

 
Figure 4. The uniqueness theorem for the stationary magnetic field (Andrei et al. 2012)  

The theorem stands for linear materials, or for non-linear materials, but having B-H 
monotone magnetization characteristics. The case of materials which have hysteresis is not 
included. Particular forms can be deducted from this general formulation, expressed by field 
potentials. 

2.7.2. The enouncing by scalar magnetic potential (magnetostatic field problems) 

In magnetostatic regime problems, the sources of the magnetic field are represented by the 
permanent magnetization of the bodies (Andrei et al., 2012). 

The boundary conditions, expressed by the scalar magnetic potential, are of the following 
types: 

a. Dirichlet Conditions, which consist of imposing values for the scalar magnetic potential 
at the points on the surface, denoted by SD: 

     ; DV P f P P S    (47) 

These conditions imply knowing the value of the tangent component of the intensity of 
the magnetic field in the respective points, which is equal to the derivative by the 
tangent direction of the scalar magnetic potential (Flueraşu & Flueraşu, 2007). 
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b. Neumann Conditions, which consist of imposing the values of the derivative of the 
scalar magnetic potential iny the direction of the normal to the surface, denoted by SN. 
Practically, this type of conditions imposes the normal component of the magnetic 
induction in the respective points on the surface: 

   ;n N
dVB g P P S
dn

      (48) 

c. mixed conditions, that consist of imposing a condition in the form of a linear 
combination between the two above condition types, on a portion SM of the surface. 

   ; M
dVV h P P S
dn

      (49) 

3. Finite element analysis 

3.1. Triangular finite elements  

The first step in solving the problems using the Finite Element Method (FEM) begins by 
dividing the analysis area in finite elements, as well as the choice of the finite element type. 
Currently, a wide range of finite elements is used, but their classification, their description, 
as well as their criteria presentation for choosing adequate finite element types does not 
represent the subject of this chapter. In the presented application, the triangular finite 
element with three nodes is used. At the same time with the choice of finite element type, 
the shape functions are chosen, so that the description of finite elements is followed by the 
associated shape function presentation. Concerning the shape functions, the interpolating 
polynomials are mainly used due to the facility in their derivation and their integration. The 
interpolation on a triangle supposes a shape or interpolating function which links the nodal 
values (triangle vertices). An approximation of the solution of the magnetic vector potential 
A


 is allowed at the level of each triangular element „e” (Figure 5), according to the 
following interpolating polynomial (Stammberg, 1995): 

 k k k ka b x c y       (50) 

 
Figure 5. The triangular element „e” 
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The shape function coefficients ak, bk, and ck are called the generalized coordinates. These 
coefficients are constant because they depend on the constant coordinates of the nodes only. 

The values of the shape functions vary between 0 and 1. They are equal to 1 in node k and 
liniarly decrease in the elements adjacent to this node, being null in the rest of the nodes and 
elements (Figure 6). Thus: 

 
 
 

, 1 1,2,3

, 0
k k k

k i i

x x y y k

x x y y i k





   

   
 (51)  

 
Figure 6. Graphical representation of the shape function 

The shape function 1 for node 1 results from the formula (Stammberg, 1995): 

 
1 1 1

2 2 1

3 3 1

1 1
1 0
1 0

x y a
x y b
x y c

     
     

      
     
     

. (52) 

The shape function coefficients are: 
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i i i i
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





 (53)  

where:  

 2 3 3 2 1 3 1 2 3 1 2 1D x y x y x y x y x y x y       (54) 

and the index i takes the values by circular permutations in nodal set of an element „e”, in 
clockwise order. Writing with Se, the area of element „e”: 

 
1 1

2 2

3 3

1
1 1
2

1
e

x y
S x y

x y
  (55) 

Considering: 
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 2 eD S  (56) 

The magnetic vector potential in an arbitrary point (x,y,z) is obtained with the following 
equation: 

    
 

1
, , , ,

n e

k k
k

A x y z x y z A


   (57) 

where: 

k - shape function  
 n e - number of nodes on element  

kA - magnetic vector potential of node k  

3.2. FEM application for two-dimensional problems of stationary magnetic field 

Finite element methods (FEM) use most of the times a variation principle. According to the 
variation computation, solving a differential equation in a field and under certain boundary 
conditions is equivalent with minimizing, in that field, a functional corresponding to the 
differential equation with its boundary conditions. A functional integral is an integral 
expression, a function that depends on the unknown functions. The functional integral has a 
finite value. 

The problem concerning solving the system of differential equations of the electromagnetic 
field with some boundary conditions is equivalent with the problem of finding a function 
which gives the integral minimum by which the energy system is expressed. 

Let’s consider the energy functional associated with the arbitrary three-dimensional field D: 

  
0 0

E B

VDdE HdB JA V d
             
  

 
    

D

D  (58) 

where , , ,D E B H
   

 are the vectors associated with electric and magnetic fields, A


 is the magnetic 
vector potential, V  is the scalar electric potential, J


 is the density vector of conduction electric 

current and is the volume density of electric charge (Silvester & Ferrari, 1996).  

The first parenthesis of the integrand represents the difference between the volume density 
of the electric and magnetic energy. The second parenthesis represents the difference 
between the volume density of interaction energies between the conduction current and 
magnetic field, as well as between the electric charge and the electric field. The interaction 
energies are equal to the work done by the field forces in order to bring the current density, 
respectively electric charge, from infinity, where the potentials are considered 
 0, 0 ,A V 


, to the states characterized by the values A


 and V . 

The electromagnetic potentials A


and V define the vectors E


 and B


 of the electromagnetic 
field:  
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 E grad V 


 (59) 

and 

 B rot A
 

 (60) 

The energy functional associated with the stationary magnetic field produced by the direct 
currents and in case by permanent magnets is expressed as: 

  
0

B

A HdB JA d
 
   
 
 
 


   

D

D  (61) 

Two-dimensional problems of stationary magnetic field are by definition problems in which 
the unknown, the vector magnetic potential A


, is orientated as one axis of the coordinate 

system and depends on the other two coordinates of the system (Stammberg, 1995). 

2D problems in Cartesian coordinates (x,y,z) are called parallel-plane. The current density J


 
is oriented by the axis Oz and the magnetic vector potential has the structure A Ak


 and 

its orientation is also by the axis Oz. The magnetic induction is written as: 

 

 

 
0 0 ,

i j k
A AB rotA i j k gradA

x y z y x
A x y

    
      

    

 

  
 (62) 

The square of magnetic induction is: 

    
2 2

2 22 .

0

A
y
A A AB rot A grad A
x y x

 
  
       

               
 
 
 

 
 (63) 

The magnetic vector potential A


 is obtained by minimizing the functional: 

   0A  


 (64) 

In the case of stationary magnetic field, the functional is related to the physical size of a 
known issue, such as the total energy of the magnetic field inside the domain D:  

 1
2m

V

W H Bdv 
 

 (65) 
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The magnetic energy is located in the magnetic field with the volume density mw : 

 
2

2 2m
H B Bw




 
  

 (66) 

Eckhardt describes in detail the solution to this problem. The magnetic field density is 
reduced to the following scalar equation (Stammberg, 1995; Eckhardt, 1978):  

 
22

21 1
2 2m

A Aw B J A J A
x y 

                   
 (67) 

In the case of the parallel-plane fileds, the boundary conditions are: 

    , , DA x y f P P C   (68) 

  1 ,
N

N
C

dA g P P C
dn

    (69) 

where Eq. (68) represents the Dirichlet boundary conditions on the boundary CD and Eq. 
(69) represents the Neumann boundary conditions on the boundary CN. The unknown 
function  ,A x y  is the solution of the Poisson’s equation in a two-dimensional domain, the 
boundary Γ being composed of two disjoint parts CD and CN where the Neumann and 
Dirichlet conditions are described (Figure 7): 

 

 
 
Figure 7. The domain of computation for a two-dimensional problem (Andrei et al. 2012) 

 
221

2S

A A J A dxdy
x y

                     
  (70) 
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where the function  represents the magnetic energy computed on the surface SΓ bounded 
by the curve Γ. The unknown function  ,A x y  for node i is determined by minimizing the 
functional: 

 
2

1 0
i i i iS

A A A A AJ dxdy
A x A x y A y A

                                   


  (71) 

Therefore, the following equations system is obtained: 

 
 

1
0

q i

k
z i

f
A


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   (72) 

Ai is the magnetic vector potential of the node i of the element z. 

The differentials involved in Eq. (71) are written according to the shape functions and have 
the following expressions (Stammberg, 1995; Eckhardt, 1978): 
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   
 (76) 

 
 

1

n e

k k i i i i
ki i

A A a b x c y
A A

 


          
    
  (77) 
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 


 (78) 

A homogeneous medium is considered, thus the magnetic permittivity µ is constant for each 
finite element, being independent of the x and y coordinates:  

      1 1 1 2 2 2 3 3 3 0
2 6

e
i i i i i i

i

D DA b b c c A b b c c A b b c c J
A 


         


 (79) 

where D is the determinant computed according to Eq.(56). 

Eq. (79) can be written under matrix form as: 
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0
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A
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         
 


 (80) 

The functional is sum of contributions other than the „ne” finite elements. Stationarization of 
the functional requires (Stammberg, 1995; Silvester & Ferrari, 1996): 

 
1

0
ne

e

e iA







 (81) 

where „ne” is the total number of finite elements. 

    F K A P Q               (82) 

The term P    is used for the case of the „source” type elements where the current density J  
is non-null, and the term Q    is used for the case of the elements which have in one of the 
sizes a non-homogeneous Neumann boundary. By assembling the„ne” equations in Eq. (81), 
a linear system of equations of magnetic vector potential values in the mesh nodes is 
obtained (Ioan, 1993). 

4. Applications  

Direct current (DC), which was one of the main means of distributing electric power, is still 
widespread today in the electrical plants supplying particular industrial applications. The 
advantages in terms of settings, offered by the applicants of DC motors and by supply through 
a single line, make direct current supply a good solution for railway and underground 
systems, trams, lifts and other transport means. Current-limiting circuit breakers play an 
important role in electrical low-voltage circuits. Due to the high short-circuit currents it is 
necessary a very short time to switch off the faulted branch. For this reason the current limiting 
circuit breakers are conceived as elaborated solutions especially for the arc quenching system, 
meaning the path of current and the arcing chamber (Vîrjoghe, 2010). 

This section presents the calculation of the magnetic field in the arcing chamber of a current-
limiting d.c. circuit breaker of 1250 A, 750 V, and in a DC circuit breaker-separator of 3150 
A, 1000 V. The authors present few optimization solutions of some quenching systems 
which will lead to more performing constructive choices. Two-dimensional (2D) and three-
dimensional (3D) problems of stationary magnetic field are addressed.  

The finite element software package ANSYS is used for calculation of the magnetic field 
components. This tool includes three stages: preprocessor, solver and postprocessor. The 
procedure for carrying out a static magnetic analysis consists of following main steps: create 
the physics environment, build and mesh the model and assign physics attributes to each 
region within the model, apply boundary conditions and loads (excitation), obtain the 
solution, and review the results (ANSYS Documentation). 
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A typical magnetic field problem is described by defining its geometry, material properties, 
currents, boundary conditions, and the field system equations. The computer requires the 
input data and provides the numerical solution of the field equation and the output of 
desired parameters. If the values are found unsatisfactory, the design is modified and 
parameters are recalculated. The process is repeated until optimum values for the design 
parameters are obtained. 

In order to define the physics environment for an analysis, it is necessary to enter in the 
ANSYS preprocessor (PREP7) and to establish a mathematical simulation model of the 
physical problem. In order to this, the following steps are presented below: set GUI 
Preferences, define the analysis title, define the element types and options, define the 
element coordinate systems, set real constants and define a system of units, and define the 
material properties (ANSYS Documentation). 

The Global Cartesian coordinate system is the default. A different coordinate system can be 
specified by the user by indicating its origin location and orientation angles. The coordinate 
system types are Cartesian, cylindrical (circular or elliptical), spherical, and toroidal.  

Some materials with magnetic properties are defined in the ANSYS material library. The 
materials can be modified to correspond more closely to the analysed problem and to be 
loaded in the ANSYS database. The copper property shows temperature which depends on 
resistivity and relative permeability. All other properties are described in terms of B-H 
curves. Most of the materials included in ANSYS are used for modeling the electromagnetic 
phenomenon. The element types are used to establish the physics of the problem domain. 
Some element types and options are defined to represent the different regions in the model. 
If some laminated materials are aligned in an arbitrary form, the element coordinate system 
or systems have to be identified and used. The applications presented in this chapter use the 
PLANE53 element in the two-dimensional problem and the SOLID97 element for the three-
dimensional problem. 

In order to obtain the magnetic field values, the Maxwell’s equations are solved by using the 
imput data. The nodal values of the magnetic vector potential are considered as main or 
primary unknows. Their derivatives (e.g., flux density) are the secondary unknows. After 
this, it is possible to choose the type of solver to be used. The available options include 
Sparse solver (default), Frontal solver, Jacobi Conjugate Gradient (JCG) solver, JCG out-of-
memory solver, Incomplete Cholesky Conjugate Gradient (ICCG) solver, Preconditioned 
Conjugate Gradient solver (PCG), and PCG out-of-memory solver (ANSYS Documentation). 

The results of the calculations are shown in the postprocessing phase, which is a graphical 
program. Here, it can be observed if the applied loads affect the design, if the finite element 
mesh is good, and so on. The resulting fields in the form of contour and density plots are 
displayed by this praphical program. The analysis of the field at arbitrary points, the 
evaluation of a number of different integrals, and the plot of some quantities along pre-
defined contours are also made with this program. The plotted results are saved in the 
Extended Metafile (EMF) format. 
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4.1. Numerical modelling of stationary magnetic field in area slope-slider- 
ferromagnetic profile of arc chamber in case of a current-limiting DC circuit 
breaker – 2D application 

The problem of magnetic field distribution in the arc chamber of DC a circuit breaker with 
rated current 1250A was numerically solved. The conductor where a current of 1250 A flows 
is located in the immediate vicinity of a ferromagnetic profile. This has the role of enhancing 
and orienting the magnetic field in the arc-quenching chamber for obtaining a strong force 
that moves the arc up inside the extinction chamber (Vîrjoghe, 2004).  

It is considered the plane parallel model, whose cross section is shown in Figure 8. This 
model is an I shaped ferromagnetic profile, with cross section in the vertical plane and the 
dimmensions of 60x3 mm2. The cross section of copper conductor is 5x15 mm2. The 
conductor is surrounded by a slider with U shaped cross section and a thickness of 1mm. 

 
Figure 8. The physical model in the area with ramp, slider and ferromagnetic profile  

For numerical computation the PLANE53 element was chosen, which allows two-
dimensional modeling of the magnetic field in plane parallel and axisymmetric problems. 
This element is based on the magnetic vector potential formulation with Coulomb 
calibration. This element is also applicable to the stationary magnetic field with the 
possibility of modeling the magnetic nonlinearities. The material used for other two 
ferromagnetic profiles is a steel chosen from the ANSYS library and having the properties in 
the emagM3.SI_MPL folder. The material is M3 steel and its magnetization curve is shown in 
Figure 9. This domain was discretized in a number of 2436 triangular finite elements 
uniformly distributed (Vîrjoghe, 2004).  

The boundary conditions and loads are applied to a 2-D static magnetic analysis either on 
the solid model (key points, lines, and areas) or on the finite element model (nodes and 
elements). The loads applied to the solid model to the mesh during solution are 
automatically transferred by ANSYS (ANSYS Documentation). 
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To observe the influence of the ferromagnetic slider and of the ferromagnetic plate on the 
magnetic fied distribution, the magnetic induction is computed and the magnetic flux lines 
are drawn. The slider and the ferromagnetic plate case were studied independently of each 
other. 

 
Figure 9. The magnetization characteristic for the M3 steel 

Figure 10 and Figure 11 respectively show the magnetic induction spectrum and the 
magnetic field lines only, for the case of ferromagnetic slider.  

 
Figure 10. The magnetic induction spectrum in the presence of the ferromagnetic slider 

Figure 12 and Figure 13 respectively show the magnetic induction spectrum and the 
magnetic field lines only, for the case of I shaped ferromagnetic profile. Figure 14 and Figure 
15 respectively show the magnetic induction spectrum and the magnetic field lines when 
using the ferromagnetic profile and the ferromagnetic slider (Vîrjoghe, 2004). 

Analyzing these simulations, a strong influence of the ferromagnetic slider on the 
orientation of the magnetic field was observed. When using only the ferromagnetic slider, a 
shielding of the field lines is observed, and the maximum values of the magnetic induction 
is 0.907 T. The I shaped ferromagnetic profile makes a good shielding of the field lines 
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obtaining the maximum values of magnetic induction of 0.153 T. If both methods of 
magnetic field orientation are used together then a maximum value of magnetic induction of 
0.947 T is obtained. To obtain the system optimization in this area, the simulations for a 
thickness of 2 mm have been repeated. 

 
Figure 11. The magnetic equipotential lines in the presence of the ferromagnetic slider 

 
Figure 12. The magnetic induction spectrum in the case with the ferromagnetic profile 

Thus, the obtained results are plotted in comparison with those presented for the slider of 1 
mm (Figure 16). For the slider with the thickness of 2 mm, the values of magnetic induction 
are lower (up to 0.5 T). Using the slider of 1 mm thickness a better orientation of the field 
lines, as well as a better arc transmission toward arc-quenching chamber are observed. The 
path for the displayed charts is chosen between two points placed symmetrically one from 
another in the middle of a figure which contains the conductor, slider and ferromagnetic 
profile (Vîrjoghe, 2004). 
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Figure 13. The magnetic equipotential lines in the presence of the ferromagnetic profile 

 
Figure 14. The magnetic induction spectrum in the area with ramp, slider and ferromagnetic profile.  

 
Figure 15. The magnetic equipotential lines in the area with ramp, slider and ferromagnetic profile.  
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Figure 16. Magnetic induction variation depending on the thickness of the slider. 

4.2. Numerical modelling of stationary magnetic field of arc-quenching chamber 
in case of a DC circuit breaker-separator – 3D application 

The physical model of the arc-quenching chamber in case of a DC circuit breaker-separator 
of 3125 A having the ramps-ferromagnetic profiles is shown in Figure 17. In this model, two 
profiles composed of a ferromagnetic material are presented. The magnetization curve of the 
two profiles is shown in Figure 9.  

 

 
Figure 17. The DC circuit breaker-separator model with a current of 3125A. 
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These profiles form a rectangular prism with length of 150 mm, height of 100 mm and 
thickness of 5 mm. The electric arc ramps 1 and 2 are made of copper and have width of 
10mm and thickness of 2.5 mm. The left ramp is inclined to the vertical with an angle of 45º. 

The arc chamber model together with ramps 1 and 2 are incorporated in a boundary 
volume, where the air is defined as material. In order to achieve the circuit continuity, two 
ramps have been unified with a bar 3 having the same dimensions of the ramps (Figure 18). 

In the preprocessing phase, the materials are defined and chosen. For the current path, 
consisting of two ramps and the connecting bar, the copper was chosen. For the two 
ferromagnetic plates, from ANSYS library a M3 steel is chosen, having the properties 
contained in the emagM3.SI_MPL file (ANSYS Documentation). The next step in the 
preprocessor phase is the mesh generation and load application upon the elements (Figure 
19). In this application, for modeling the three-dimensional stationary magnetic field a 
SOLID97 element is chosen. For the numerical computation of the stationary magnetic field, 
the model of the DC circuit-breaker together with the boundary volume is discretized in a 
number of 1268 nodes and 3623 triangular elements (Vîrjoghe, 2004).  

In the postprocessing phase is also applied the load on elements and boundary conditions. 

The load on elements is represented by the conduction current density. For 3D analysis, a 
positive value indicates current flowing in the +Z direction in the plan case and the -Z (loop) 
direction in the asymmetrical case. The current density is directly applied on the finite 
elements which form the conductors and its value is 125.106 A/m2. As boudary conditions 
the Dirichlet condition, A=0, is applied. 

 

 
Figure 18. The current path for DC circuit breaker – separator of 3125 A 
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Figure 19. The discretized model of the DC circuit breaker-separator of 3125 A 

The Maxwell’s equations solver is based on the Finite Element Method (FEM). The results 
are the nodal values of the primary unknowns (magnetic vector potential) and derivatives of 
these values for obtaining the secondary unknowns (magnetic induction). 

In the postprocessing phase, the tool allows visualization of magnetic induction spectrum, 
determination of magnetic sizes in arbitrarily chosen points, as well as the evaluation of the 
different charts. Figure 20 shows the magnetic induction spectrum in the arc-quenching 
chamber of DC circuit breaker-separator of 3125 A. A maximum value of magnetic 
induction 2.149 T is obtained. 

The DC circuit breaker-separator is designed as a particularly elaborated solution for the 
current path and the arc-quenching chamber. It is widely known that in electromechanic design 
of a switching device, the arc-quenching chamber together with current paths and contacts 
represent the essential element due to their switching performances in normal operating 
conditions and in abnormal conditions. An optimization criterion of this arc-quenching 
chamber concerns the ferromagnetic material used in the construction of the ferromagnetic 
profiles. Simulation was performed for three different steels. For the two ferromagnetic plates, 
three different steels from ANSYS library are chosen, namely (ANSYS Documentation): 

 carpenter (silicon) steel with material properties contained in emagSilicon.SI_MPL file; 
 iron cobalt vanadium steel with material properties contained in the emagVanad.SI_MPL file; 
 SA1010 steel with material properties contained in the emagSa1010.SI_MPL file. 

It was established that in the case of steel EmagSilicon utilization, the maximum value of 
magnetic induction is 1.883 T, in the case of EmagVanad the maximum value of magnetic 
induction is 1.975 T and in the case of EmagSa1010 the maximum value of magnetic 
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induction is 1.44 T. Hence, the optimal material for construction of these profiles is 
EmagVanad. Although the steel with vanadium is an expensive material, it assures an 
optimal value of magnetic induction. The high price is compensated by improving the arc-
quenching chamber performance and thus increase the breaking capacity of the device 
(Vîrjoghe, 2004). 

 
Figure 20. The magnetic induction spectrum in arc-quenching chamber of DC circuit breaker-separator 
of 3125 A 

 
Figure 21. Magnetic induction distribution for the ferromagnetic material EmagSilicon  
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Figure 22. Magnetic induction distribution for the ferromagnetic material EmagVanad 

 
Figure 23. Magnetic induction distribution for the ferromagnetic material EmagSa1010 

5. Conclusion 

It is well known that in electromechanical construction of a switching device, the arcing 
chamber along with current paths and contacts represents the all-important elements 
concerning switching performances of these in normal operating conditions as well as in 
operation under faults (Truşcă & Truşcă, 2001). 
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Comparing the magnetic flux density spectrums in the three cases it can be observed that 
the maximum arc-quenching effect is obtained by using EmagVanad for the ferromagnetic 
shapes. For this material an optimal distribution for the magnetic field in the circuit breaker 
arcing chamber is obtained, which leads to a rapid movement of the electric arc towards the 
ferromagnetic plates. Arc quenching and arc voltage limiting occur in base of the niche 
effect principle along with the electrode effect (Hortopan, 1996). 
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1. Introduction 

The finite element method (FEM) (its practical application often known as finite element 
analysis (FEA)) is a numerical technique for finding approximate solutions of partial 
differential equations (PDE) as well as integral equations. The solution approach is based 
either on eliminating the differential equation completely (steady state problems), or 
rendering the PDE into an approximating system of ordinary differential equations, which 
are then numerically integrated using standard techniques such as Euler's method, Runge-
Kutta, etc. In solving partial differential equations, the primary challenge is to create an 
equation that approximates the equation to be studied, but is numerically stable, meaning 
that errors in the input and intermediate calculations do not accumulate and cause the 
resulting output to be meaningless. There are many ways of doing this, all with advantages 
and disadvantages. The finite element method is a good choice for solving partial 
differential equations over complicated domains (like cars and oil pipelines), when the 
domain changes (as during a solid state reaction with a moving boundary), when the 
desired precision varies over the entire domain, or when the solution lacks smoothness. 
For instance, in a frontal crash simulation it is possible to increase prediction accuracy in 
"important" areas like the front of the car and reduce it in its rear (thus reducing cost of 
the simulation). Another example would be in Numerical weather prediction, where it is 
more important to have accurate predictions over developing highly-nonlinear 
phenomena (such as tropical cyclones in the atmosphere, or eddies in the ocean) rather 
than relatively calm areas. 

The finite difference method (FDM) is an alternative way of approximating solutions of 
PDEs. The differences between FEM and FDM are: 

 The most attractive feature of the FEM is its ability to handle complicated geometries 
(and boundaries) with relative ease. While FDM in its basic form is restricted to handle 
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rectangular shapes and simple alterations thereof, the handling of geometries in FEM is 
theoretically straightforward. 

 The most attractive feature of finite differences is that it can be very easy to implement. 
 There are several ways one could consider the FDM a special case of the FEM approach. 

E.g., first order FEM is identical to FDM for Poisson's equation, if the problem is 
discretized by a regular rectangular mesh with each rectangle divided into two 
triangles. 

 There are reasons to consider the mathematical foundation of the finite element 
approximation more sound, for instance, because the quality of the approximation 
between grid points is poor in FDM. 

 The quality of a FEM approximation is often higher than in the corresponding FDM 
approach, but this is extremely problem-dependent and several examples to the 
contrary can be provided. 

Generally, FEM is the method of choice in all types of analysis in structural mechanics (i.e. 
solving for deformation and stresses in solid bodies or dynamics of structures) while 
computational fluid dynamics (CFD) tends to use FDM or other methods like finite volume 
method (FVM). CFD problems usually require discretization of the problem into a large 
number of cells/gridpoints (millions and more), therefore cost of the solution favors simpler, 
lower order approximation within each cell. This is especially true for 'external flow' 
problems, like air flow around the car or airplane, or weather simulation.A variety of 
specializations under the umbrella of the mechanical engineering discipline (such as 
aeronautical, biomechanical, and automotive industries) commonly use integrated FEM in 
design and development of their products. Several modern FEM packages include specific 
components such as thermal, electromagnetic, fluid, and structural working environments. 
In a structural simulation, FEM helps tremendously in producing stiffness and strength 
visualizations and also in minimizing weight, materials, and costs.FEM allows detailed 
visualization of where structures bend or twist, and indicates the distribution of stresses and 
displacements. FEM software provides a wide range of simulation options for controlling 
the complexity of both modeling and analysis of a system. Similarly, the desired level of 
accuracy required and associated computational time requirements can be managed 
simultaneously to address most engineering applications. FEM allows entire designs to be 
constructed, refined, and optimized before the design is manufactured. 

The 3-D finite element method (FEM) involves important computational methods. Many 
efforts have been undertaken in order to use 3-D FEM (FEMLAB6.2 WITH MATHWORKS). 
Analytical and Numerical Analysis have been developed for the analysis of the end zones of 
electrical machine.This paper presents different methodologies based on 3-D geometries 
using analytical solutions, This method has been implemented in conjunction with various 
geometry optimization techniques as it provides very fast solutions and has exhibited very 
good convergence with gradient free algorithms. Interior permanent magnet motors are 
widely applied to the industry because of many advantages. Also the characteristics of 
magnetic materials are important to the performance and efficiency of electrical devices. 
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Tradeoffs between accuracy, robustness, and speed are central issues in numerical analysis, 
and here they receive careful consideration. The principal purpose of the work is to evaluate 
the performances of the PMLOM models when implemented in the FEM analysis of 
electrical machines. The developed methods are applied in an in-house FEM code, 
specialized for the design and analysis of electrical machines. The FEM simulations and the 
analysis on axial flux PMLOM, and the numerical results are validated experimentally. The 
techniques developed for the calculation of integral parameters involve particular 
assumptions and simplifications and present specific advantages. 

LINEAR motors are finding increasing applications in different specific areas like high-
speed transport, electric hammers, looms, reciprocating pumps, heart pumps etc. [1]-[7]. 
They are also well suited for manufacturing automation applications. Therefore, design of 
energy efficient and high force to weight ratio motors and its performance assessment has 
become a research topic for quite a few years. The Permanent Magnet Linear Oscillating 
Motors (PMLOMs) are one of the derivatives of the linear motors in the low power 
applications having the advantages of higher efficiency. They can be supplied with dc or ac 
voltages [4]-[7] of which, the dc motors are having better efficiency due to the absence of the 
core losses.  

The motor designed and analyzed in this paper finds the suitability of application in the 
loads having low frequency and short stroke requirements. One such application is the 
heart pump, where frequency of oscillation is to be adjusted between 0.5 to 1.5 Hz, with 
the requirement of variable thrust depending on the condition of the heart under 
treatment. For analysis of such motors the main task is to determine the essential 
equivalent circuit parameters, which are its resistances and inductances. The resistances, 
for the machine, though vary with operating conditions due to temperature, do not affect 
much on its performance assessment. However, the inductances for these machines are 
mover position dependent and mostly affect the machine performance. Therefore, 
determination of these parameters is essentially required for analyzing the machine 
model. There are several works [6], [9] executed which assumes the machine inductance 
to be constant for simplicity of the model although different other works [4], [7]and [8] 
dynamically estimate the inductance through FEM and field analysis and control[10-15] 
for getting correct results. In this paper, the machine under consideration is an axial flux 
machine and the mover is having a non-magnetic structure, which is aluminium. Also the 
rare earth permanent magnets used in the mover are having a relative permeability nearly 
equal to unity and therefore the magnetic circuit under consideration will be unsaturated 
due to major presence of air in the flux path. Hence, consideration of constant inductance 
is quite errorless for such kind of machines, which also conforms to the experimental data 
shown later. Finally the machine is analyzed with the help of the field equations and 
solved for forces and resultant flux densities through FEMLAB6.2 WITH MATHWORKS 
backed by suitable experimental results. A controller using PIC16F877A microcontroller 
has been developed for its speed and thrust control for successful implementation in the 
proposed application. 
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2. Machine construction 

The construction of the prototype PMLOM is shown in Fig.1 below. Also the dimensional 
details of the motor are shown in Fig.2. There are two concentric coils on the surface of the 
stators connected in such polarities that the fluxes for both the coils aid each other to form 
the poles in the iron parts. The formation of the N and the S poles of the electromagnet of 
the stator are shown in the Fig.2.  

 
Figure 1. Construction details of the developed PMLOM (i) Stators to be mounted on both sides of the 
mover and (ii) the mover (iii) the PMLOM machine 

 
Al – Aluminium material         PM-N42 Permanent Magnet 

Attraction Force AF   and Repulsion Force RF  

Coil 1 – aa’ and bb’   Coil 2 –  cc’ and dd’ 

Figure 2. Dimensional details of the developed PMLOM 
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3. Simulation and experimental results 

The proposed scheme is simulated under FEMLAB6.2 WITH MATHWORKS  environment, 
which provides a finite element analysis. The machine specification used for both simulation 
and experiment is given in Table-1.  

The classical description of static magnetic fields are provided by Maxwell’s equations  

  H J  (1) 

    0B      (2) 

Where H is magnetic field intensity, B is magnetic flux density and J is the current density 
of the magnetic field.  

Subject to a constitutive relationship between B and H for each material: 

 B H    (3) 

Where  denotes material permeability. Boundary conditions that must be satisfied at the 
interface between two materials having finite conductivities are, 

    1 2ˆ 0n H H    (4) 

    1 2ˆ 0n B B    (5) 

Since the divergence of the curl of any vector must always be zero, it follows from (2) that 
there exists a so-called magnetic vector potential A such that,  

  B A    (6)  

Substituting (3) and (6) into (1) and taking a curl on both sides yields 

 


 
   

 

1 A J    (7) 

If 

  ˆJ Jz    (8) 

Then,  

  ˆA Az      (9) 

Thus, (7) reduces to, 

 
 

    
 

1 A J   (10) 
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The above equation (10) may be written in the expanded form as, 

 
 

     
          

1 1A A J
x x y y

     (11)  

This equation (11) represents the scalar Poisson equation.  

The mover consists of aluminium structure embedded with rare earth permanent magnets 
with the polarities as shown. The force developed will be attractive on one side and 
simultaneously repulsive on the other side. These two forces act in the same direction to 
enhance the total force on the mover, assisting the linear oscillation of the mover cyclically. 

 

(a)

(b)
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Figure 3. (a) Finite element mesh of PMLOM while mover is oscillating with in Stator 1. (b) Magnetic 
flux  plotting of PMLOM while mover is oscillating with in Stator 1, at 1 Hz, 4Amps, (c) Magnetic flux  
plotting of PMLOM while mover is oscillating with in Stator 1, at 0 Hz. (d) Finite element Magnetic flux 
plotting at upper and lower  part of the airgap while mover oscillates within stator 1. Now Mover is 
attracted to the Stator 1 

(c)

(d) 



 
Finite Element Analysis – New Trends and Developments 138 

Rated Input Voltage 70V 
Rated input power 200 watts 

Stroke length 10 mm 
Outer Diameter (Stator) 85 mm 

Stator core type CRGO Silicon Steel 
Thickness of lamination 0.27 mm 

Stator length 60 mm 
Number of turns in Coil aa’,cc’ 800 
Number of turns in Coil bb’,dd’ 400 

Coil resistance 17.8 ohms 
Slot  depth 45 mm 

Permanent Magnet Type Rare Earth N42, Nd-Fe-B 
Permanent Magnet Length 2 mm 

Coercivity 925000 A/m 
Remanence 1.3  T 

Outer diameter (Mover) 65 mm 
Shaft diameter 8 mm 

Coil Inductance 0.18 Henry 

Table 1. PMLOM Design Parameters 

 
Figure 4. Power Circuit of PMLOM 

Figure 3(a), shows the FEM mesh configuration for the PMLOM Prototype. Figure 3(b) 
shows the Magnetic flux plotting of PMLOM  while mover is oscillating within Stator 1, at 1 
Hz, 4Amps.Figure 3(c) is  the corresponding flux plotting of the machine while mover is 
oscillating within Stator 1, at 0 Hz. Figure 3(d) illustrates the finite element analysis of the 
PMLOM at the axial airgap. Thus, the geometries of the mover and stator have been 
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accurately discretized with fine meshes. Symmetry was exploited to reduce the problem 
domain to half of the axial cross section of the overall motor.  

The halved longitudinal cross section of the motor has created the calculation area, with 
Dirichlet boundary conditions (Fig. 3(d)). Thus, the magnetic field has been analyzed. For the 
calculations, material linearity of the NdFeB permanent magnet ( r =1.048) was supposed. Its 
coercive force was assumed to be cH = 925 KA/m and the magnetization vector direction were 
adopted for the calculations. Very small air gaps compared with the main motor dimensions 
between permanent magnets and ferromagnetic rings were neglected due to very small 
magnetic permeability of the permanent magnets, it is acceptable.  

The finite-element mesh (Fig. 3(d)) is dense in the air gap between stator cylinder sleeve and 
the mover. The fine mesh is also used near the edges of ferromagnetic parts where the 
magnetic field is expected to vary rapidly (Fig. 3(d)). In order to predict the integral 
parameters of the PMLOM, it is necessary to analyze the magnetic field distribution in the 
stator and mover. Obviously, it is possible to optimize the construction by making changes 
in the stator and mover geometries. The improvements of the structure result from 
knowledge of the magnetic field distribution. The presented results have been obtained for 
one variant of the motor construction. 

The control block diagram along with the experimental set-up power electronic control 
circuit is shown in Fig.4. Here the thrust control is provided with the help of phase 
controlled ac supply which can vary the input voltage. The frequency control is provided 
with the help of a low cost and commercially available microcontroller PIC16F877A.   

The set up is reliable and provides a scope for portability to any remote place. Fig. 5 shows 
the plot of the input voltage and current of the machine at 5 Hz. From which the assumption 
of constant inductance for the machine can be well validated. Fig. 6 shows the characteristics 
plot of input power, voltage and force as a function of current for the machine taken at a 
frequency of 1Hz. Figure 7 shows Force at different axial airgap length. Force observed by 
measurement is compared with the theoretical Force value and shown in fig. 8. 

 
Figure 5. Current waveform of PMLOM taken from Tektronix make Storage Oscilloscope 
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Figure 6. Measured Coil current versus Power( (W).Voltage(V),Force(N) Characteristics of PMLOM 
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Figure 7. Axial Airgap Length versus Force  

 
Figure 8. Comparison of measured Force Versus Theoretical Force 
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4. Conclusions 

A simple control method along with the development of an axial flux PMLOM suitable for 
low frequency and short stroke application is presented. Analytical solution to the forces 
and determination method of the integral parameters of a PMLOM are shown. Finite 
element method with FEMLAB6.2 WITH MATHWORKS is used for the field analysis of the 
different values of the exciting current and for variable mover position. Computer 
simulations for the magnetic field distribution, forces are given. To obtain experimentally 
the field distribution and its integral parameters, a physical model of the motor together 
with its electronic controller system has been developed and tested. The Prototype has been 
operated in the oscillatory mode with small loads at low frequency up to 5 Hz. The 
theoretically calculated results are compared with the measured ones and found a good 
conformity. 
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1. Introduction 

The calculation of a ground electrode resistance, using a two layer soil model, has been 
widely presented in literature. Several methods had been used. Formulas for grid in two 
layers soil using the synthetic-asymptote approach have been developed in (Salama et al., 
1995). Berberovic explored the Method of Moments in the calculation of ground resistance, 
using higher order polynomials approximation in the unknown current distribution in 
(Berberovic et al., 2003), and the Galerkin’s Moment Method with a variation was used in 
(Sharma & De Four, 2006). Another theoretical tool commonly used is the Boundary 
Element Method, as in (Colominas et al., 1998, 2002a, 2002b; Adriano et al., 2003). These 
authors transformed the differential equation that governs the physical phenomenon into an 
equivalent boundary integral equation. The Matrix/Integration Method for calculating the 
mutual resistance segment in one and two layered soil was adopted by (Coa, 2006) and an 
optimised method of images for multilayer soils was used in (Ma et al., 1996). Even in the 
study of ionization phenomena, the two layer ground model was used in (Liu et al., 2004). In 
general these works used the theory of images, which implies infinite series for the 
expanded Green function as in (Berberovic et al., 2003). Recently, a work presented the effect 
of low resistance materials filling in a pit surrounding a rod, working with two different soil 
resistivity’s (Al-Arayny et al., 2011). This type of research was also presented in (Zhenghua 
et al., 2011), that even considered the use of electrolytic materials. A Finite Element Method 
(FEM) application to grounding can also be found in (Manikandan et al., 2011) to the 
analysis of wind turbines grounding. In this chapter the FEM is presented in a theoretical 
basis for cylindrical symmetry problems, using a ground rod resistance calculation as an 
example. Comparison with experimental result is also made. 

This chapter presents the Finite Element Method for the calculation of a rod resistance in a 
two layer soil. Theoretical basis of the method are presented. The FEM mesh was tested in 
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homogeneous soil, first a cylindrical approach to IEEE model was considered, in order to 
guarantee that mesh is voltage and energy adapted, and then the whole model was 
discretized. Resistance was calculated using Joule’s law in a FEM energetic approach. The 
zero volt Dirichlet boundary was located within a distance of 3 cm, 15 cm and 7.6 m from 
the ground electrode, to analyze if the resistance relations indicated by IEEE in 
homogeneous soil could be also used in a two layer soil. The simulated results were 
compared with those obtained from Tagg formula. In homogeneous soil the errors are less 
than 1%. In two layer soil, resistance error to Tagg formula decreased from values of 28% 
with zero volt boundary at 3 cm to 22% with zero volt boundary at 15 cm; for the whole 
model discretized the error is near -18%. The results were unsatisfactory, thus the 
percentage resistances at these distances cannot be generalized in a two layer soil. However 
the error between simulated and field measured values is of 4.6%, turning the FEM analysis 
a valuable simulation tool. 

2. Finite element method 

The first order finite elements method using triangular elements may be regarded as two-
dimensional generalizations of piecewise-linear approximation techniques as in reference 
(Sylvester & Ferrari, 1990), widely used in Electrical Engineering. The method allows several 
choices for mesh types and an easy treatment for boundary shapes. 

Several problems in electrical engineering require the solution of Laplace equation in two or 
three dimensions with two kinds of boundary conditions, such as prescribed potential values 
along the referred boundaries, Dirichlet conditions, and vanishing normal derivative along 
the symmetry planes, Neumann condition. As an example, in power system grounding, 
where capacitive and inductive effects are not considered, since industrial frequency is too 
low, the soil potential satisfies Laplace equation. On the other hand grounding systems 
dimensions are much smaller than power line wavelength, so that propagation phenomenon 
is not considered. Laplace equation solution is equivalent, according to the minimum 
potential energy principle, to the following energy (  W u ) functional minimization, that 
stores field energy per unit volume, as in (Sylvester & Ferrari, 1990): 

 21( )
2 V

W u u dV   (1) 

where u  i s  the  potential and V  the  volume. 

The integral is evaluated over all the volume defined by the problem boundary. 

2.1. Discretization 

In Fig. 1 the IEEE model for a ground rod is presented. The boundary conditions within a 
distance of 7.6 m from the electrode have zero potential. At surface, normal derivative 
potential is also zero, since there is no current flowing in the air. 
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Figure 1. IEEE model as in  (IEEE Std 142, 2007) 

Due to isotropy, the problem was discretized in the ‘rz’ plane, since cylindrical coordinates 
were used. To obtain an approximate solution by FEM the problem region is subdivided 
into triangular elements. The solution mesh is presented in Fig. 2, near the rod top end. 

 
Figure 2. Model discretization near rod top end 
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in reference (Sylvester & Ferrari, 1990). This standardized fashion is done using a first order 
polynomial for potential within each element, which is the approximate solution to the 
actual one. 

 ( , )u r z a br cz    (2) 

The true potential distribution is thus replaced by a piecewise planar function and within 
each triangle side, potential is obtained by a linear interpolation of node potentials. 

Considering a generic triangular finite element, as shown in Fig. 3, equation (2) must satisfy 
node potentials. Using the equation in the three nodes a system is obtained, allowing the 
constants ‘a’, ‘b’ and ‘c’ to be calculated as functions of node potentials. 

 
1 1 1

2 2 2

3 3 3

U a br cz
U a br cz
U a br cz

  
  
  

 (3) 

where U1, U2 and U3 are node potentials. 

 
Figure 3. Finite element with nodes numbered 

Using Cramer´s rule the referred constants are easily obtained. The formula for ‘a’ is: 

 

1 1 1

2 2 2

3 3 3

1 1

2 2

3 3

1
1
1

U r z
U r z
U r z

a
r z
r z
r z

  (4) 

The denominator is recognized as twice the triangle area (2A) as in reference (Sylvester & 
Ferrari, 1990). It must be pointed that this formula was found by integration so that area 
become negative if the nodes are clockwise numbered. Equation (2) is useful when node 
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potentials are already known. In order to calculate these potentials is useful to represent 
potential within the element as a function of nodes potentials, so equation (2) became: 

 

     
     
     

2 3 3 2 2 3 3 2 1

3 1 1 3 3 1 1 3 2

1 2 2 1 1 2 2 1 3

2

r z r z z z r r r z U

u r z r z z z r r r z U A

r z r z z z r r r z U

                   
 
        

 (5) 

The factors multiplying nodes potentials, after being divided by 2A, are known as shape 
functions, so we can rewrite previous equation using these functions. 

        1 1 2 2 3 3, , , ,u r z r z U r z U r z U      (6) 

Or in a more elegant manner: 

    
3

1
, ,i i

i
u r z U r z


   (7) 

Shape functions have two important properties; 

1. Their value is one in the associated node and zero in the two others. 
2. In any point inside the finite element their sum is one. 

The finite element energy can now be calculated using equation (1). Node potentials, 
although unknown, are constants so the potential gradient is 

  
3

1
,i i

i
u U r z

 


    (8) 

The energy can now be evaluated, using equation (8) and (1). Considering that the integrand 
has nine sums, due to the square of potential gradient, energy functional for a single 
element is: 

  
3 3

1 1

1 .
2

e
i j i jV

i j
W u U U dV 

 

 
     (9) 

Integrating by decomposition: 

  
3 3

1 1

1 . .
2

e
i i j jV

i j
W u U dV U 

 

 
      (10) 

Defining the S variable as: 

 .ij i jV
S dV 

 
     (11) 
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As shape functions are first degrees polynomials, gradients are constants, such as their inner 
product, so the integral is obtained by the calculus of the revolution volume of the finite 
element, which is 2 cr  where cr  is the centroid radius. The S variable became: 

1. For equal index 

 
   2 2

2 3 2 3
11 2
e

c
z z r r

S r
A


  

  (12) 

2. For different index 

 
       2 3 3 1 3 2 1 3

12 2
e

c
z z z z r r r r

S r
A


    

  (13) 

The remaining terms are obtained by index cyclic rotation. The finite element energy is 
finally represented as: 

   1
2

e TW u U SU  (14) 

where S is a 3x3 matrix and U the nodes potential vector. 

2.3. Elements assembly 

The total energy model is the sum of all finite elements energy. Consider the following two 
elements with disjoint nodal numbering: 

 
Figure 4. Disjoint numbering of finite element nodes 

The nodes potential vector is: 

 1 2 3 4 5 6
T
disU U U U U U U

 
  
  

 (15) 
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The disS  matrix is formed by the elementary elements matrices. 

 disS
 

  
 

1

2

S 0
0 S

 (16) 

This matrix is tridiagonal and is called the Dirichlet matrix, as in reference (Sylvester & 
Ferrari, 1990). The energy of the two elements is: 

   1
2

T
dis dis disW u U S U  (17) 

Potentials continuity implies that the values for the same node are equal. So potential at 
node three is equal to potential at node six, in Fig. 4, and so on. It can be defined a global 
nodal numbering for element assembly illustrated in Fig. 5. 

 
Figure 5. Global node numbering 

The potential continuity for corresponding nodes will be guaranteed by a linear 
transformation that relates disjoint nodes numbering with global numbering. In this case it 
would be: 

 

1

2 1

3 2

4 3

5 4

6

1 0 0 0
0 1 0 0
0 0 0 1
0 1 0 0
0 0 1 0
0 0 0 1

conj

dis

U
U U
U U
U U
U U
U

   
                                   
     

 (18) 

In all cases would be: 

 dis conjU CU  (19) 

Introducing this relation in equation (15) it can be obtained an energy formulation in 
function of global numbering nodal potentials. 
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   1 .
2

T
conj conjW u U SU  (20) 

with 

 T
disS C S C  (21) 

In order to minimize energy expression  W u , it is necessary to calculate the derivative, in 
equation (21), with respect to potential vector and solve the equation 

 0SU   (22) 

Also, in order to avoid trivial solution 0U   the S matrix should be partitioned in blocks, as 
well as potential vector: 

 0n
n k

k

U
S S

U
   

   
    

 (23) 

Where nU  is a vector of unknown node potentials and kU  is the known potential vector. 
Unknown potential nodes must be the first to be numbered and after the known potentials 
that satisfy boundary conditions. The nS  and KS  dimensions must allow matrix 
multiplication. Final solution for the unknown potential is given by: 

 1
n n K KU S S U   (24) 

This FEM solution is called stored energy approach. 

2.4. Electric field 

Knowing the node potentials, the constants in equation (8) are easy to find as well as the 
electric field strength, which is given by: 

 E b c ji


  


 (25) 

3. IEEE model in homogeneous soil 

The analysis of a ground rod was carried out with first order triangular finite element only in 
the 3 cm near the rod, since 25 % of the rod resistance is within this region as in reference (IEEE 
Std 142, 2007). This avoids the discretization of the IEEE entire model with a zero volt boundary 
condition at 7.6 m away from the rod, being the rod resistance four times the calculated value. 

3.1. The IEEE model for cylindrical region 

In order to test the FEM mesh, it was considered only the cylindrical region in homogeneous 
soil. This problem has a theoretical solution, since it is considered as two cylinders centered 
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in the same axis. The inner cylinder has the rod radius and the outer cylinder has a 3 cm 
radius, which is the zero volt boundary condition. The finite elements are shown in Fig. 6. 

The voltage at any point between the cylindrical surfaces is easily obtained by: 

 0( ) ln
ln

b
b r
a

V
v r   (26) 

with ‘b’ the outer cylinder radius, ‘a’ the inner cylinder radius, and 0V  the potential 
difference applied between the cylindrical surfaces. 

With ‘b’=3 cm, ‘a’=8 mm and a voltage difference of 220 V between the two cylinders, 
equation (27) becomes: 

 0.03( ) 166.4 ln rv r   (27) 

where ‘r’ is the distance to common axis. 

The numerical values for voltage were calculated by FEM. For 2 m length cylinders, the 
potential at 1 cm away from the common axis is presented in Fig. 7. 

 
Figure 6. Cylindrical region Discretization 

The potential is almost constant along a parallel line 1 cm away from rod axis, as expected. 
In the first point its potential is 183.2 V and the last has the value of 182.1 V. The potential 
variation with the distance to axis ‘r’ is presented in Table 1. 
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Distance (m) Theoretical value 
(Volt) 

Mean value 
(Volt) 

Mean error 
(%) 

Maximum error 
(%) 

0.01 182.9 182.6 -0.2 -0.4 
0.014 126.9 126.6 -0.2 -0.6 
0.021 59.4 59.3 -0.2 -0.2 

Table 1. Potential variation between cylindrical surfaces 

 
Figure 7. Potential along a parallel line 1 cm away from rod axis 

The obtained figures for potential at distances of 1.4 cm and 2.1 cm are similar to Fig. 7. It 
was concluded that this mesh is voltage adapted. For the resistance between the two 
cylinders was used the FEM energetic approach given by (Martins & Antunes, 1997), 

 
2 2

2
JOULE

V

v vR
P E dV

 


 (28) 

where v  is the voltage between the cylinders,   the conductivity of the material between 
the two cylinders, E  the electric field intensity and V  the revolution volume due to axial 
symmetry, generated by each finite element. The obtained value for the electric resistance 
was 20.8 Ω considering a medium with 200 Ωm for the resistivity. That value should be 
compared with the theoretical value for the resistance between two cylinders given by 
(Purcell, 1998): 
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 ln
2

bR
L a




  (29) 

with P  the electric resistivity, L  the length, b  the outer surface radius and a  the inner 
cylindrical radius. 

The value given by equation (30) is 21.0 Ω. The simulated value of 20.8 Ω is 1% less, which 
allows the conclusion that the mesh is also adapted in energy. 

3.2. The complete IEEE model 

To achieve the discretization of the entire IEEE model the mesh was altered in the rod 
bottom as shown in Fig. 8. Triangular finite elements have inner angles greater than 5º 
avoiding triangle areas close to zero, allowing stiffness matrix to be well defined. 

 
Figure 8. Bottom rod FEM discretization 

For a rod with these dimensions the Dwight formula (Dwight, 1936) gives a value for 
resistance of 94.0 Ω. According to the standard (IEEE Std 142, 2007), this formula has 13% 
excess, so the corrected theoretical value is 83.2 Ω. The FEM simulated value for resistance, 
with the zero volt boundary at 0.03 m, is 20.8 Ω, representing 25 % of total resistance, so the 
numerical simulated value is four times 20.8 which results in 83.2 Ω. This value is equal to the 
theoretical one. 
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4. IEEE model in a two layer soil 

4.1. Zero volt equipotential at 3 cm 

As in previous examples, it was supposed that the Dirichlet border was 3 cm away from 
the rod axis, accounting for 25% of rod resistance, a supposition that needs validation in 
a two layer soil. The results, for a 2 m length rod, 8 mm radius, buried at ground level, 
with an upper soil layer of 100 Ωm resistivity, and a 500 Ωm resistivity in the lower 
layer, are summarized in Table 2. Theoretical resistance was obtained using Tagg 
formula, as in reference (Tagg, 1964). The results are unacceptable. The assumption that 
25% of resistance in a two layer soil is also in the first 3 cm is probably wrong. 
Changing the values of the layers resistivity for the same rod, the results are presented 
in Table 3. 

The results are acceptable but would be better if they were greater than the theoretical ones, 
as a safe margin. 

 
Upper layer 

thickness (m) 
Theoretical 

resistance (Ω) 
FEM simulated 

value x4 (Ω) error (%) 

0.5 134 104 -22.4 
1.0 93.4 69.4 -25.7 
1.5 72.0 52.0 -27.8 

Table 2. Resistance variation for positive voltage reflexion coefficient 

 
Upper layer 

thickness (m) 
Theoretical 

resistance (Ω) 
FEM simulated 

valuex4  (Ω) 
error (%) 

0.5 60 51.9 -13.5 
1.0 77 69.1 -10.3 
1.5 114 103 -9.6 

Table 3. Resistance variation for negative voltage reflexion coefficient 

4.2. Zero volt equipotential at 15 cm 

The zero volt Dirichlet border was moved to 15 cm, where in homogeneous soil remains 
50 % of the rod resistance. The mesh was changed improving the rod bottom 
discretization as shown in Fig. 2. The results in Table 4 were obtained for a 2 m length 
rod, 8 mm radius, buried at ground level, with an upper soil layer of 100 Ωm resistivity, 
and a 500 Ωm resistivity in the lower layer. The analysis of the results shows that the 
errors are quite high. The assumption that the first 15 cm contain 50 % of rod resistance 
seems to be incorrect. Interchanging the values of the layers resistivity, new results were 
obtained, and are shown in Table 5. In this case the errors are acceptable bur not 
conservative. 
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Upper layer 
thickness (m) 

Theoretical 
resistance (Ω) 

FEM simulated 
value x2 (Ω) error (%) 

0.6 124 103 -17 
1.2 83.4 67.1 -20 
1.8 63.4 49.6 -22 

Table 4. Resistance variation for positive voltage reflexion coefficient 

 
Upper layer 

thickness (m) 
Theoretical 

resistance (Ω) 
FEM simulated 

value x2 (Ω) error (%) 

0.6 62.8 59.0 -6 
1.2 89.1 85.3 -4 
1.8 162 154 -5 

Table 5. Resistance variation for negative voltage reflexion coefficient 

4.3. IEEE entire model discretization 

In the last simulation the IEEE whole model was discretized. The complete solution mesh is 
presented in Fig. 9. 

In order to validate the mesh, it was used the same conductance for all finite elements. It 
was chosen the value of 0.005 S/m. With this value the used rod, 2 m length and 8 mm 
radius, has a resistance, using Dwight formula, of 94 Ω. According to IEEE, this formula has 
a 13% excess to real value that should be of 83 Ω. The computer program developed 
returned a value of 87 Ω, which is 4.4 % higher than IEEE value, making the mesh 
sufficiently accurate. 

The next step was to simulate a two layer soil model, with an upper soil layer of 100 Ωm 
resistivity, and a 500 Ωm resistivity in the lower layer. The results are presented in the 
Table 6. 

 
Upper layer 

thickness (m) 
Theoretical 

resistance (Ω) 
FEM simulated 

value (Ω) error (%) 

0.5 134 118 -11.9 
1.0 93.4 81.4 -12.8 
1.5 72.0 62.0 -13.9 

Table 6. Resistance variation for positive voltage reflexion coefficient 

Interchanging the values of resistivity layers, new results were obtained and are shown 
in Table 7. The results are acceptable, unfortunately by default. The last one is 
surprisingly high, but within 20% of theoretical value. It can be concluded than FEM 
meshes can provide useful results, considering the whole IEEE model in discretizing the 
problem. 
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Figure 9. Entire IEEE model discretization 

 

Upper layer 
thickness (m) 

Theoretical 
resistance (Ω) 

FEM simulated 
value (Ω) error (%) 

0.5 60 52.6 -12.5 
1.0 77 66.7 -13.4 
1.5 114 93.2 -18.3 

Table 7. Resistance variation for negative voltage reflexion coefficient 

5. Field measurements 

In order to experimentally validate the model, resistivity measurements were done in a 
sandy soil. The obtained values are presented in Table 8. 
 

Distance (m) 0.5 1 2 3 4 5 6 8 
Resistance (Ω) 552 207 41 7 4 2 3 2 

Resistivity (Ωm) 1734 1301 515 132 101 63 113 108 

Table 8. Resistivity variation with depth 

The distance referred in the first row is the distance between test rods in Wenner 
method, as in (Telford et al., 1990). The resistivity curve is presented in Fig. 10. To 
choose a value for top layer resistivity, it was considered only the first resistivity 
measurement, since it wasn’t found an upper asymptote. For bottom layer resistivity it 
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was considered the average resistivity value of the last four points values, which are 
almost in a horizontal line. The average value is 94.5 Ωm. The upper layer thickness is 
obtained considering the point where concavity changes. The three first points are 
almost in a straight line, and concavity is detected only after the third point. It was 
considered the point where resistivity curve crosses the 400 Ωm ordinate where 
abscissae seem to be 2.3 m. Using this value in Lancaster-Jones rule one obtains 
(Lancaster-Jones, 1930): 

 3 2.3
2
h
  (30) 

The upper layer thickness ‘h’ is 1.53 m. This value was rounded to 1.5 m. 

The ground rod was discretized as indicated in Fig. 9. The measured value was 108 Ω and 
the simulated value using FEM is 113 Ω, which is 4.6 % higher. The equipotential lines were 
calculated and presented in Fig. 11. 

Equipotential lines in bottom layer are closer to rod, since this layer has a smaller resistivity. 

 
Figure 10. Resistivity measurements with depth 
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Figure 11. Equipotential lines with depth for a 2 m rod 

6. Conclusions 

In this chapter the Finite Element Method for the calculation of a rod resistance in a two 
layer soil was presented. The developed meshes were tested in homogeneous soil and in a 
cylindrical problem, which has theoretical solutions, and they are well adapted considering 
potential distribution or energy dissipation. 

In homogeneous soil, 25% of rod resistance is in the 3 cm rod closest soil, according with 
IEEE and as validated in this work. 

For an upper layer soil, with resistivity smaller than the resistivity of the lower layer soil, the 
assumption that 25% of rod resistance is in the nearest 3 cm and 50% in the nearest 15 cm is 
wrong and cannot be generalized.  

For an upper layer soil, with resistivity bigger than the resistivity of the lower layer soil, the 
assumption that 25% of rod resistance is in the nearest 3 cm and 50% in the nearest 15 cm is 
acceptable, but the results are not conservative.  

Discretizing the whole IEEE model allowed obtaining results with less than 20% error, but 
these results are not conservative. The whole mesh was tested considering equal resistivity, 
obtaining results similar to the ones gotten from the homogeneous soil simulation. 

The comparison with the field measurement is good, since simulated value for resistance is 
only 4.6% higher. 
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1. Introduction 

Since the Nobel Prize winner, Richard Feynman gave the presentation “there is plenty of 
room at the bottom” [1], a variety of micromachined sensors, actuators, and systems have 
emerged and made encouraging progress in the past 50 years, based on technological 
innovations and increased market demand [2]. To date, Micro-Electro-Mechanical Systems 
(MEMS) have been developed into an interdisciplinary subject which involves electrical, 
mechanical, thermal, optical, and biological knowledge. Due to its significant potential, which 
has partially been demonstrated by the success of inertial MEMS devices (accelerometers, 
gyroscopes, etc [3, 4]) radio frequency (RF) MEMS devices (switches, filters, resonators, etc [5-
7]) and optical MEMS devices (Digital Light Processing, DLP [8, 9]), the research in MEMS has 
attracted worldwide interest. Figure 1 shows a typical process of a MEMS device from design 
goal to system integration. We can see that the structure and fabrication process of MEMS 
device are designed according to the design goal. Then before fabrication, we need to perform 
modeling to the structure. By modeling, we can estimate the performance to see if it satisfies 
the design goal and then optimize it to achieve the best performance. By performing modeling, 
substantial time and money can be saved, which increases the throughput and reduces the 
cost. As a result, modeling is critical for MEMS research. 

Modeling applied in MEMS applications can mainly be divided into two categories, 
theoretical modeling and numerical modeling. The theoretical modeling is to apply exact 
equations to obtain exact solutions. It is a direct approach which is easy to interpret 
intuitively [10]. However, it has limitations that solutions can only be obtained for few 
standard cases, and it is incapable or difficult in the following situations: (1) shape, 
boundary conditions, and loadings are complex; (2) material properties are anisotropic; (3) 
structure has more than one material; (4) problems with material and geometric non-
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linearity; (5) multiphysics situations when more than two physics are coupled together. The 
theoretical modeling is sometimes applied in MEMS applications when the structure is not 
complex, and it is also useful to verify the result of FEA.   

 
Figure 1. A schematic of a typical process of a MEMS device 

Numerical modeling is to apply exact equations to obtain approximate solutions only at 
discrete points called nodes. Contrary to theoretical modeling, numerical modeling can 
handle situations which theoretical modeling is incapable. Finite Element Method (FEM) 
and Finite Difference Method (FDM) are two approaches most frequently used in numerical 
modeling. For both methods, they start from discretization, which derives the solution 
domain into a number of small elements and nodes. For FDM, differential equation is 
written for each node, and the derivatives are replaced by difference equations. In contrast, 
for FEM, it uses integral formulations rather than difference equations to create a system of 
algebraic equations, and an approximate continuous function is assumed to represent the 
solution for each element. The complete solution is then generated by connecting or 
assembling the individual solutions, allowing for continuity at the interelemental 
boundaries [11]. FEM have quite a few advantages over FDM [10], such as (1) it can give 
values at any point, while FDM can only give value at discrete node points; (2) FEM can 
consider the sloping boundaries exactly, while FDM makes stair type approximation to 
sloping; (3) FEM needs fewer nodes to get good results while FDM needs large number of 
nodes; (4) FEM can handle almost all complicated problems, while FDM cannot handle 
complicated problems, such as multiphysics simulation which is the general case in MEMS 
applications. 

Due to the aforementioned advantages, FEA has been widely applied in MEMS 
applications, including electromagnetic simulation, electrothermal simulation, 
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thermoelectromechanical simulation, piezoelectric/piezoresistive simulation, microfluidics 
simulation, etc. Quite a few commercially available FEA softwares are readily used in MEMS 
applications, such as Intellisuite, ANSYS, COMSOL, Conventorware. Of them, Intellisuite is 
specially designated for MEMS simulation with quite a few modules, including Intellimask, 
Intellifab, MEMeterial, 3D Builder, Thermoelectromechanical modules, etc., which has user 
friendly interface that users can obtain 3D structure directly from defined masks and 
fabrication process, and the 3D structure can be directly applied to further simulation [12]. 
What is more, the simulation result is quite close to experiment. In this chapter, we use 
Intellisuite for simulation. 

In this chapter, we show the importance of FEA in MEMS research through an example of a 
micromachined spatial light modulator (μSLM). Firstly we will introduce the design and 
operating principle of the μSLM. Then we will introduce the modeling of the μSLM, 
including theoretical modeling and FEA modeling. Following is the optimization of the 
μSLM according to the modeling. Finally we present the fabrication and experiment. 

 
Figure 2. A schematic of the operating principle of spatial light modulator (SLM) used in Adaptive 
Optics systems, SLM is used to corrected the wavefront  

Spatial Light modulators (SLMs) play an important role in modern technology, particularly 
in the field of micro-optical technology. They find applications in optical communication 
systems, and adaptive optics (AO) systems [13]. AO systems perform closed-loop phase 
correction of time-varying, aberrated wavefronts using two essential components: a 
wavefront sensor and a SLM [14]. A schematic of the operating principle of SLM is 
illustrated in figure 2. When light from stars travel through the atmosphere, aberration is 
induced by the turbulence in atmosphere, and the wavefront of the light is no longer a 
plane. If this wavefront is imaged by a telescope, a very blurry image is formed, therefore in 
Adaptive Optics area, researchers use SLM to correct the wavefront to be plane.   

Conventional SLMs based on piezoelectric actuators cost approximately $1000 per actuator 
and therefore find limited use even at major research centers [15]. In contrast, MEMS 
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technology offers a potentially low cost alternative to existing SLMs: the μSLMs. A large 
problem for μSLMs is their small stroke (maximum displacement), which greatly 
undermines the performance of the whole AO system. As a result, researchers have tried 
quite a few approaches to enlarge the stroke, but these approaches are difficult to implement 
because of either fabrication difficulty or structural complexity. As a result, we come up 
with a μSLM based on the leverage principle in this chapter to solve the problem. 

2. Design and modeling of the μSLM 

2.1. Design and operating principle of the μSLM 

A schematic of the μSLM is shown in figure 3(a). It can be seen that the μSLM is composed 
of four single out-of-plane actuators and one mirror plate (here only 1/4 mirror plate is 
shown), which are connected together by a via. From figure 2(b) we can see that one single 
out-of-plane actuator is composed of two anchors, two microbeams, one lower electrode, 
one upper electrode (serving as the short arm), and one long arm. The lower electrodes and 
two anchors are fixed to substrate and the long arm is connected to the two anchors by two 
microbeams. The size of each actuator is shown in figure 3(b). W1, L1, a, and L represent the 
width and the length of the upper and lower electrodes, and l1, b1, l2 and b2 denote the length 
and the width of the microbeams and long arms, respectively, while h is the thickness of the 
structural layer and d is the horizontal distance from the fulcrum to the central line of 
bottom electrode.  

When the lower and upper electrodes are subjected to different potentials, electrostatic 
attractive force arises. A torque around the microbeams emerges and makes the upper 
electrode and the long arm rotate around the microbeams, as shown in figure 3(c). As a result, 
the end of the long arm goes upward, thus forming a lever mechanism, with the microbeams 
as a fulcrum. If the length of the long arm is much larger than that of the short arm, the 
downward displacement will be magnified to be a much larger upward displacement. At the 
same time, microbeams will bend down due to the moment from the electrostatic force. The 
total displacement of the mirror plate is the vector sum of the upward displacement caused by 
the rotation and the downward displacement of the microbeams (Here we assume the 
displacement of the mirror plate is the same as the displacement at the end of the long arm, 
because in MEMS applications the mass of the mirror plate can be neglected). By a proper 
design of the structure, the downward displacement of the microbeams will be much smaller 
than the upward displacement at the end of the long arm, resulting in a larger upward 
displacement of the mirror plate [16]. 

2.2. Modeling of the μSLM 

After presenting the structure and operating principle, we modeled the μSLM both by 
theoretical modeling and FEA. First we carried out theoretical models. Two approaches 
were used in the theoretical modeling: the energy method and the superposition method.  
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Figure 3. (a) A lateral view of  a μSLM, it is composed of four single out-of-plane actuators and one 
mirror plate, each single out-of-plane acutator is composed of two anchors, two microbeams, one lower 
electrode, one upper electrode (serving as the short arm), and one long arm, (b) A lateral view of a 
single out-of-plane actuator, (c) cross-section view of the single out-of-plane actuator in figure 2(b) 
when a voltage is applied between the lower and upper electrode, a small displacement at the end of 
short arm will be amplified to be a larger displacement at the end of the long arm 
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In the energy method, the force and moments applied to the structure is shown in figure 4. 
When different potentials are subjected to the upper and lower electrodes, electrostatic force 
arises. As mentioned above, the upper electrodes and long arms rotate around microbeams, 
and at the same time microbeams bend down. The force, moment and torque of anchors 
tend to resist this movement and the structure will ultimately reach a balance. 

When a voltage V is applied to the four upper and the four lower electrodes, the electrostatic 
attractive force can be calculated by [16]:  

 
2

0
2

00

2[1 ]
2e
LaV dF

hh


    (1) 

In our design, 2d/h0=20, and θ<<1. In order to simplify our calculation, the second term can 
be omitted without bringing much error. 

The electrostatic force can be simplified and rewritten as follows 
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In order to derive the displacement at the mirror, we used Castigliano’s second theorem and 
set a fictitious load at the central mass, as shown in Figure 4. 

 
Figure 4. Mechanical model of the energy method for the μSLM, forces, moments and torques of one 
single out-of-plane actuator is shown for simplification. 

Considering the symmetry of the structure, the μSLM can be divided into four single out-of-
plane actuators and each one can be further subdivided into four parts: two microbeams, 
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one long arm and one upper electrode (short arm). In our case, the width of upper 
electrodes is much larger than the other three parts and the length is smaller, therefore we 
assume upper electrodes are rigid. 

According to equations of force equilibrium, we get 

 12 8N eF F F    (3) 

As shown in figure 4, the bending moment and the torque applied to two microbeams and 
the long arm can be given by 

 1 2 ,NM M F x M   1 2T T T   (4) 

 3 1( ) 2 2 4 2 ,e N eM F a x F x T F a F x T       3 0T    (5) 

According to the virtual work principle, the total strain energy in one single actuator is 
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Where E, G, J, I1, and I2 represent the Young’s modulus, the shear modulus, the polar 
moment of microbeams, the inertial moment for the long arm and the microbeams, 
respectively. 

As the total strain energy stored in the lever actuator is four times of that in single actuator, 
and the bending and torsional angles at point A (see in figure 4) are both zero, according to 
Castigliano’s second theorem 
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Based on the unit-load method, equation (7) can be rewritten as  
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By combining the above equations to (8) and letting the fictitious load F1 be zero, we have 
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  (9) 

In the superposition method, the displacement of the mirror plate is the sum of the upward 
displacement of the mirror plate and the downward displacement of the microbeams. 
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Figure 5. Mechanical model of the superposition method: (a) shows the forces and moments of the long 
and short arm, (b) shows the forces and moments of the 2 microbeams.  

First we will analyze the force and moment applied on the long arm, as shown in figure 5. 
According to the boundary condition 

 1 1 1 2 1 1 1 1(0) 0, (0) 0, ( ) , / 2 py y y l M l GI        (10) 

We can obtain the displacement of the center of the two long arms: 
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The mechanical model of 2 microbeams is illustrated in Figure 5(b). It is an indeterminate 
beam with variable sections, therefore we can derive the displacement of center of the two 
microbeams using transfer matrix method [17]. First we divide it into 4 sections. The transfer 
matrix from the left end of section 1 to the right end of section 4 can be obtained  

 1 2 2 1C A A B A A       (12) 

Where A1, A2, and B are transfer matrix between left end and right of section 1, left end and 
right of section 2, right end of section 2 and left end of section 3, which can all be calculated 
by law of transfer with cross section state vector. 

After applying boundary condition, y1L=0, θ1L=0, y4R=0, θ4R=0 we can calculate force and 
moment applied on the left end of section 1 and right end of section 4. Then substituting the 
force and moment to  

 1 2 1C A A   (13) 

We can calculate the transfer matrix from the left end of section 1 to the right end of section 
2. Therefore according to 

(a) 

 

 

 

(b) 
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 2 1 1R LZ C Z    (14) 

Where Z2R, ZlL are the section vectors of the left end of section 1 and the right end of section 
2, respectively. We can calculate the displacement of the center of various section beams. By 
substituting parameters in to these equations, we calculated that the downward 
displacement is 32.4 nm when applied a voltage of 20 V. 

Finally the displacement calculated by the superposition method is derived as 

 
2 2

1 1
22

1 11

1 1(1 )
2 1 / 22

waW V lz y
EI l l GJh EI


  


  (15) 

Here y2 is calculated by the transfer matrix method.  

 

 
 

Figure 6. Results of the two theoretical models and FEA results, the discrepancy between theoretical 
modeling and FEA is small 

After deriving the theoretical models, we carried FEA modeling using Intellisuite. Then the 
FEA result is validated the theoretical modeling by comparing them with FEA. As shown in 
figure 5, both the two theoretical models are in good agreement with FEA, and this validates 
the results of the theoretical modeling and FEA. Then we combined the theoretical modeling 
and FEA to optimize the structure. 
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3. Structure optimization 

In this section, we discuss the optimization of the structure, including the optimization of 
the microbeams, the long arm, the end of the long arm, the connection between the four 
single out-of-plane actuators, and the upper electrode.  

3.1. The long arm  

3.1.1. Width of the long arm 

When studying the influence of the width of the long arm, we calculated the differential of 
equation (9) to b2 

 
2 2 3

1 21
2

2 1 2 1 1 2

1
2 12( 2 )

eEF l l az z I h
b I b EI l GJl
  

  
   

   (16) 

 
Figure 7. Theoretical and simulation data of width of long arm versus displacement, as the with of the 
long arm increases, the displacement decreases 

It is obvious that the differential is constantly negative. Therefore the larger the width of the 
long arm, the smaller the displacement is when subjected to the same voltage. The 
simulation and theoretical data of the mirror plate displacement versus the width of long 
arm is shown in figure 7. Therefore as the long arm becomes wider, the out-of-plane 
displacement decreases. However, if the width of the long arm is very small, it tends to be 
more fragile and more likely to break during fabrication and test. 
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Figure 8. Theoretical and simulation data of length of long arm versus displacement, as the length of 
the long arm increases, the out-of-plane displacement increases 

3.1.2. Length of the long arm 

Then the influence of the length of the long arm is discussed. As it is well known, the longer 
the long arm is, the larger out-of-plane displacement will be. The simulation and theoretical 
displacement are in good agreement with what is expected, as shown in figure 8. However, 
as mentioned above, a too long arm is very fragile and is more likely to be broken. 

3.2 .The microbeams 

After deriving characteristics of long arm, we went on with the microbeams. In this section, 
the influence of the width and length of microbeams is discussed. First, we come to the 
width of microbeams. It’s easy to see that as the width of microbeam becomes larger, so 
does the torsional stiffness, which will thwart the rotation of the microbeams and make the 
out-of-plane displacement smaller. This is verified by FEA. 

Second, the influence of the length of microbeams is discussed. Figure 9 is the simulation 
data of out-of-plane displacement versus microbeam length. As the microbeam length 
increases, so does the out-of-plane displacement, however, the increase rate slows down. 
This is because when the length of microbeam is small, the torsional stiffness is relatively 
larger, as mentioned above, thwarting the microbeams from rotating. In contrast, as the 
length increases, the downward bending displacement of microbeam increases, as shown in 
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equation (9). As a result, the upward displacement is partly offset by downward bending of 
microbeams. 

 

 
 

Figure 9. Simulation data of length of microbeams versus displacement, displacement increases with 
the increase of the length of microbeams, and the rate of increment slows down gradually. 

There is one thing to notice when the microbeams are too short. When applied a relatively 
high voltage, the microbeams may fracture due to torsional stress. According to mechanics 
of materials, the maximum torsional stress can be calculated as follows 

 max 2
1

T
b h




   (17) 

where τmax, α, T, b1 and h represent the maximum torsional stress, coefficient related to b1/h, 
torque of the microbeams, width and height of microbeams. Also we know that 

 1Tl
GJ

    (18) 

where θ and T are rotational angle and torque, respectively. 

Assuming the end of short beam has a displacement of 0.5 μm, the rotation angle is about 
0.0125 radian, then it can be calculated that τmax=45.97 MPa. Here the parameters we use are 
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α=0.231, G=65 GPa. According to ref. [18], using these two equations above, we calculate 
that τmax=60.2 MPa and the portion of stress-strain curve is about 0.00076. We set G=79 GPa 
[19] and α=000.299, other parameters are based on reference [19]. Then according to 
reference [19], the fracture stress of polysilicon is two to ten times smaller than single crystal 
silicon, therefore at this time, when microbeam is shorter than 22.9 μm, it will fracture when 
applied a high voltage. 

3.3. The end of the long arm 

According to theoretical modeling and FEA, we found that the end of the long arm greatly 
confines the displacement. As a result, we made three optimizations to the structure.  

First, we presented a long arm with variable sections. The structure of the long arm is 
shown in figure 10, which consists of two different sections, one has a width of 3 μm and 
the other 20 μm. The total length of the two sections is set to be 190 μm. When the length 
of the thin 3 μm width section changes, the theoretical calculation and simulation of the 
thin long arm length versus the displacement is plotted in figure 11, the theoretical data is 
calculated using equation (A. 4) (appendix) in reference [16]. We can see that the 
displacement of the mirror plate increases remarkably when the length of thin long arm 
varies from 0 μm to 40 μm, this is attributed to the fact that the implementation of a thin 
long arm at the end of long arm makes the confinement of opposite levers to decrease, 
therefore, it makes the long arm easier to rotate. In contrast, the displacement changes 
little, just from 0.5 μm to 0.54 μm, when the length of thin long arm varies from 40 μm to 
120 μm. This is because when the length of thin long arm increases, the confinement of the 
end of long arms decreases, it makes the out-of-plane displacement to increase. However, 
when the thin long arm become longer, the bending of the long arm increases and this 
makes the out-of-plane displacement decrease. The increased displacement, which is 
caused by a decreased confinement, is pulled back by the decrease displacement caused 
by the increased bending for longer thin arms. When the thin long arm is longer than 120 
μm, the out-of-plane displacement demonstrates a remarkable decrease, as this thin long 
arm makes too much bending. Since it doesn’t change much from 40 μm to 120μm, we set 
the thin long arm 44 μm, for the reason that according to design rules, the shorter the thin 
long arm, the more robust it is in fabrication. This is the first structure after optimization 
(Structure 1). 

The second optimization of the structure was to add a crab-leg beam, as illustrated in figure 
12. By this means, the structure is more compact while at the same time achieving a larger 
displacement. We can see that both the displacement and amplification factor increase as the 
length of the crab-leg beam becomes longer. As a result, we set the length of the crab-leg 
beam to be 66 μm according to design rules, and we obtained the second optimized 
structure (Structure 2). The third optimization was to add a gimbal-like serpentine beam, as 
demonstrated in figure 13 [11]. This further reduces the confinement of the end of the long 
arm, thus achieving a larger displacement.  
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Figure 10. Schematic of the first optimized structure: (a) Lateral view of the structure in optimization, 
(b) Top view of a single actuator in optimization 

 

 
Figure 11. Theoretical and simulation data of length of thin long arm versus displacement, as the length 
of the thin long arm increases, the displacement firstly increase, then after hitting a maximum, it 
decreases as length of thin long arm increase 

(a) (b)
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3.4. The connection between the four single out-of-plane actuators 

After optimizing the end of the long arm, we investigated the connection of four actuators. It 
is found that the first mode of the natural frequency of the structure 3 was the rotation along 
the dotted line l1 and l2 in figure 13, other than the out-of-plane movement. This was because 
there was only one connection in the structure, and the restriction to this mode was smaller 
than the mode of out-of-plane movement. This was not desirable for inducing mechanical 
instability when working at a high frequency. We made an optimization to the structure, by 
making four separate connections to connect the four actuators to the mirror, as depicted in 
figure 13. Through this method, we can enlarge the restriction of the first mode, thus making 
out-of-plane mode to be the first mode. After this optimization, the piston mode became the 
first mode, which had a resonant frequency of 4.8 kHz. 
 

 
Figure 12. Displacement and Magnification factor of the second optimized structure 

3.5. The upper electrode 

Then we made an optimization to the upper electrode by introducing the third layer 
polysilicon to the upper electrode, thus enlarging the gap from 2 μm to 2.75 μm, as illustrated 
in figure 13, by this approach, we obtained the third optimized structure (Structure 3).  



 
Finite Element Analysis – New Trends and Developments 176 

 
Figure 13. Lateral view of the third optimized μSLM 

3.6. Results after optimization 

The results after optimization is shown in figure 14. From this figure we can see that after 
optimization, the maximum displacement are 1.58 μm , 1.87 μm, and 4.5 μm, which are 3.04, 
3.6, 8.65 times, respectively,  higher than the structure before optimization. After 
optimization, we did experiment on the fabrication and test of the structures. 

 
Figure 14. Simulation results before and after optimization, after optimization, the maximum 
displacement are 1.58 μm , 1.87 μm, and 4.5 μm, which are 3.04, 3.6, 8.65 times higher than the structure 
before optimization 
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4. Fabrication and test 

The three optimized structures were fabricated by a three-layer polysilicon surface 
microfabrication process. First of all, 600 nm low-stress silicon nitride is deposited on an n-
type (100) wafer with a diameter of 150 mm to form electrical isolation layer. Then 500nm 
polysilicon film is deposited as the first polysilicon layer (Poly0). Afterward, Poly0 is 
patterned by photolithography and etched. Then 2 μm of phosphosilicate glass (PSG) is 
deposited as sacrificial layer. Then the first silicon dioxide layer (Oxide1) is patterned by 
lithography and etched to form dimples. The following step is to deposit a 2 μm polysilicon 
layer (Poly1) as the second polysilicon layer, which is etched afterwards to form the leverage 
mechanism. At last the Oxide1 layer is sacrificed in a bath of 49% HF to release the 
structural layer and the structure is dried by supercritical CO2 drying technique. Figure 16 
shows the SEM photograph of the structures. We can see the shapes of the structures are 
good with little curvatures, indicating that the stress gradient and stress variation along the 
beams is negligible. 

 
Figure 15. Fabrication process of the μSLM, this is a three-layer surface microfabrication process, and 
this schematic is based on the fabrication of the first optimized structure 

Then we use an optical interferometer to measure the displacement versus voltage for the 
three optimized structures. The test is performed using the Zygo Newview 7300 (Zygo Inc., 
CT, USA) A light source, in this case an incoherent broadband LED light source is split at 
the objective so that some of the light passes to a reference mirror and some is focused onto 
the surface of the sample under measurement. Light from the mirror (embedded into the 
interference lens) and the sample surface is reflected back into the instrument and imaged 
onto a camera. If the distances from the light splitter to the mirror and from the splitter to 
the surface are equal so that there is no optical path difference (OPD) then the camera will 
observe an interference pattern. This occurs when the objective is held so that the focal plane 
of the objective lies in the same plane as the surface. In order to perform a measurement of 
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the surface observed by the field of view of the objective, the objective lens is translated 
vertically and linearly so that the focal plane moves through the entire height range of the 
surface being measured. As it does so, the interference fringes will move and follow the 
height profile of the surface and this information is processed by the instrument to calculate 
the height profile to a very high precision (0.1 nm). 

 
Figure 16. SEM photographs of the three optimized structures 

 
Figure 17. Optical configuration of the white light interferometer 
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Figure 18. Optical profiles for Structure 1 before and after deformation: (a) Optical profile before 
applying voltage, we can see the profile is approximately a plane (b) Optical profile when applied a 
voltage of 47 V, we can see the short arm goes down and the long arm and central mass goes up. 

 
Figure 19. Optical profiles for Structure 2 before and after deformation: (a) Optical profile before 
applying voltage, we can see the profile is approximately a plane (b) Optical profile when applied a 
voltage of 24.75 V, we can see the short arm goes down and the long arm and central mass goes up. 
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The optical profile of Structure 1 before and after applying voltage is shown in figure 18. 
Before applying voltage, the structure profile is approximately a plane. Then after applying 
a voltage of 47 V, due to the electrostatic force, the upper electrode (short arm) goes down 
and the long arm and central mass goes up. Similar result is observed for Structure 2, as 
shown in figure 19. For the Structure 3, after applying voltage, the mirror plate did not go 
up, instead, it went down. After analysis, we believe there may be problem for the isolation 
of the mirror plate and the substrate. We will fix this problem in the future. 

The displacements versus voltage for the first two optimized structures are shown in figure 
20. We can see that the two optimized structures can obtain a stroke of 1.45μm, and 2.21μm, 
which are more than two times, and three times larger, respectively, than the stroke before 
optimization. Through this example, we can clearly see the importance of FEA in MEMS 
research: it saves time and money, while at the same time can handle complex/nonlinear 
structures. 

 
Figure 20. Experimental results of the first two structures after optimization in comparison with the 
structure before optimization, the maximum displacement is more than two and three times larger than 
the maximum displacement before optimization. 

5. Conclusion 
In this chapter we mainly discussed the significance of FEA in MEMS research through an 
example of a micromachined spatial light modulator (μSLM). We have used FEA to model 
the μSLM structure, verify theoretical models, and perform optimizations. After fabrication, 
we found that the stroke after optimization was more than 3 times larger than the stroke 
before optimization. As is demonstrated, FEA makes MEMS research to be time and cost 
efficient and thus has been widely applied in MEMS research. 
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1. Introduction 

Recently, global warming has become an important problem. High-efficiency machines 
have been needed in a large variety of industrial products in order to save electrical 
energy. For many applications, permanent-magnet (PM) synchronous machines can be 
designed which is smaller in size but more efficient as compared to induction machines 
[1-3]. Besides, PMs have been employed as an alternative to current carrying coils for 
magnetic field excitation in synchronous machines for over 50 years. The lack of slip 
rings, brushes and field winding losses have always been viewed as distinct advantages 
over that of conventional wound field machines. However, when the machine size 
becomes small, the efficiency becomes low. This is mainly due to the reason that the iron 
loss and the copper loss are large, because the iron core of the stator in the small machine 
generally does not have annealing and the resistance of the stator windings is 
comparatively large. 

This chapter presents a successful design of the high-efficiency small but novel Interior 
permanent-magnet (IPM) machines using Neodymium-Boron-Iron (NdBFe) magnets. It is 
designed to operate with both high-efficiency line-start IPM motors [3] and generators with 
damper bars [4]. Time-stepping finite element analysis has been used to successfully predict 
the dynamic and transient performances of the prototype machines. Time-stepping finite 
element analysis [3-6] has been used to successfully predict the dynamic and transient 
performances of the prototype IPM machines. The computed performance has been 
validated by tests in the prototype machine. 
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2. IPM machine configuration 
The photograph of an IPM rotor, the cross section of a quarter of the high-efficiency motor 
and the demagnetization curve of  the NdBFe magnet used for finite-element analysis are 
shown respectively in Figures 1-3, respectively [3].  

A frame size of a 600 W, 3-phase, 4-pole, Y-connected, 50 Hz, 200 V squirrel- cage induction 
machine was used for testing the IPM rotor shown in Figure 1. The four-pole magnets 
arrangement in the rotor is oriented for a high-field type IPM synchronous machine. The 
experimentally developed rotor has the following distinctive design features [3]: 

1. The fluxes from both sides of the magnet are concentrated effectively in the middle of 
the magnetic poles of the rotor.  

2. The reluctance of the d axis is larger than that of the q axis, because the d- axis flux 
passes across the magnet with high reluctance. Large reluctance torque can be obtained. 

3. The conducting material between the magnet and the rotor core is made from 
aluminum and has both functions of the flux barrier and cage bar. 

 
Figure 1. IPM rotor 

 
Figure 2. Configuration of high-efficiency IPM machine 
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Furthermore, the number and configuration of rotor slots have been successfully designed 
by using the finite-element method so that the waveform of the electromotive force (EMF) 
due to the PMs was close to the sine waveform and the cogging torque was low. 

 
Figure 3. Demagnetization curve of NdBFe magnet 

3. Method for analysis 

The analysis for taking the eddy currents into account, in general becomes essential to solve 
the three-dimensional problem. In this paper, it is assumed that the eddy currents flow 
approximately in the axial direction, because the rotor shown in Figure 1 is equipped with end 
rings. This reduces the analysis to a two-dimensional problem. The fundamental equations for 
the magnetic field are represented in the two-dimensional rectangular co-ordinates as 
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where A is the z component of magnetic vector potential A, J0 is the stator-winding current 
density, Je is the eddy current density, Jm is the equivalent magnetizing current density,  Mx, 
My are x and y components of the magnetization M, respectively.  is the conductivity, and  
is the reluctivity. The value of  in the PM is assumed the same as the reluctivity of free 
space 0. Jm is assumed zero, outside the PM. 

The effect of the eddy current for the rotor ends is taken into account by multiplying by the 
coefficient kc as described below. It is done to reduce the analysis to two-dimensional. The 
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equivalent resistance R2 for rotor bars including the rotor end rings can be given below if the 
bars are distributed at equal intervals in the rotor [7]. 
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where Rb is the resistance of a bar, Re is the resistance of the end rings, Z2 is the number of 
rotor slots and p is the pole pair number. 

Therefore, kc is given by 
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This coefficient kc is found effective to take into account the rotor-bar current for the 
fundamental space harmonic. Moreover, it has been found that the agreement between 
computed and measured results of the starting performance characteristics in the IPM motor 
is good [3]. Therefore, it is considered that design use of the kc is acceptable, even if the 
higher space harmonics exists [5]. The value of coefficient kc is 0.55 in this paper. 

3.1. Voltage, current and dynamic equations and calculation steps for IPM 
synchronous motor 

Figure 4 shows the circuit of the three-phase line-start IPM synchronous motor. It has three 
stator phase windings, which are star connected with neutral. The voltage and current 
equations of the IPM motor are given as 
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where va, vb, and vc are the phase voltages, subscripts a, b, and c represent stator quantities in 
lines a, b, and c, respectively. vn is the potential of the neutral n, when the potential of the 
neutral of the supply source is zero, ia, ib, and ic are the line currents, r1 and L1 are the 
resistance and end-winding leakage inductance of the stator winding per phase, 
respectively. ea, eb, and ec are the induced phase voltages; and ea is given by the line integral 
of the vector potential round ca which is along the stator windings of phase a [5] 
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where At is A at time t. t is the time step. eb, and ec can be obtained similarly, as in [5]. 

 
Figure 4. Circuit of three-phase line-start IPM synchronous motor 

For operation from a balanced three-phase system,  

 0.a b cv v v     (11) 

vn can be obtained by adding each side of (6)-(8) and then applying (9) and (11)  

 .
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a b c
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e e e
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 
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One obtains the following equation by substituting (12) in (6)-(8) [5]: 
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The dynamic equation is given as [3] 

 0
r

r l
d

T J B T
dt


     (16) 

where T is the instantaneous electromagnetic torque, J is the rotational inertia, r is the rotor 
angular speed, B0 is the friction coefficient, and Tl is the load torque. The torque T is 
calculated by using the Bil rule [8]. The angular speed, r is given by 
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r

d
dt
 

 
 (17) 

where  is the rotational angle of the rotor. 

One obtains the following equation by substituting (17) in (16): 

 

2

02 .l
d dT J B T

dtdt
 

  
 

 (18) 

In this paper, the forward difference method is used to obtain the rotational angle at time t 
because the vector potential, currents and rotational angle at time t- t are all known 

 

t t t t td
dt t
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  

 (19) 
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One obtains the following equation by substituting (19) and (20) in (18) [6]: 

 2 2
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1 [( )( ) (2 ) ].t t t t t t t t t
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 
  (21) 

In the case when the effect of the friction is negligibly small, the above equation can be 
represented simply as follows: 

 
   

2
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J
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      (22) 

One can obtain the vector potential, currents and rotational angle by solving (1), (13)-(15), 
and (18) using the time-stepping finite element technique [3].  

Next, the calculation steps for this analysis are shown in Figure 5. 

1. First, the terminal voltage Vl, its initial phase angle 0, Tl, and t are set, respectively. 
Each voltage for the three stator phase windings can be represented by 

  0
2 cos
3

t
a lv V t     (23) 

 0
2 2cos
3 3

t
b lv V t   
   

 
  (24) 

 0
2 4cos .
3 3

t
c lv V t   
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 
  (25) 
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2. The vector potential A at t = 0 is set, where the static field caused by only PMs is given 
as the initial value.  

3. At t = t + t, the value of  t at new t is set. 
4. At t = t + t, each voltage at new t is set. 
5. The initial values for At, iat, ibt, and ict are set. 
6. The matrix equation constructed by the time-stepping finite element technique is solved 

[5].  
7. The convergence of At is tested. Unless At converges, the process returns to step 6). 
8. After the convergence of At, iat, ibt, and ict, T t can be calculated. Then, the  t is 

determined from (22). 
9. The calculation process from step 3) to step7) continues till the steady-state currents are 

obtained. 

 
Figure 5. Flowchart of three-phase line-start IPM synchronous motor 

3.2. Voltage and current equations and calculation steps for IPM synchronous 
generator 

Figure 6 shows the circuit of the three-phase IPM synchronous generator. The voltage and 
current equations of the IPM generator are given as 
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Figure 6. Circuit of three-phase IPM synchronous generator 
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For a balanced three-phase resistance load, 

 ,a L av R i ,b L bv R i c L cv R i  (29) 

where RL is a load resistance per phase. 

vn can be obtained by substituting (29) in (26)-(28), adding each side of (26)-(28) and then 
applying (9) 
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One obtains the following equation by substituting (30) in (26)-(28).  
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One can obtain the vector potential, currents by assuming a constant speed and then solving 
(1), (31)-(33) using the time-stepping finite-element technique [5].  

Next, the calculation steps for this analysis are shown in Figure 7. 

 
Figure 7. Flowchart of three-phase IPM synchronous generator 

1. First, N, Δt and the corresponding rotational step s are set, respectively. 
2. The vector potential A at time t = 0 is set, where the static field caused by only PMs is 

given as the initial value. 
3. At t = t + Δt, the initial values for At, iat, ibt and ict at new t are set. 
4. The matrix equation constructed by the time-stepping finite-element technique is solved 

[5]. 
5. The convergence of At is tested. Unless At converges, the process returns to step 4). 
6. After the convergence of At, iat, ibt and ict are obtained. The calculation process from step 

3) to 5) continues till the steady-state currents are obtained. 

4. Steady-state synchronous and transient performance 

This paper contains the steady-state synchronous and transient performance characteristics 
of the IPM synchronous machine shown in Figure 2. The good agreement between 
computed and measured results validates the proposed method for the finite-element 
analysis to predict the machine performance exactly. 
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4.1. EMF due to PMs 

Figure 8 shows the terminal voltage waveform generated by PMs in driving the IPM 
synchronous machine at 1500 r/min by the external motor. It is shown that the agreement 
between the computed and measured values of the generated voltage is excellent. 

 
Figure 8. EMF generated by PMs 

4.2. Steady-state synchronous and transient performance of Line-start IPM 
synchronous motor 

Figure 9 shows the load performance characteristics at 140V. It is clear from Figure 9 that the 
power factor is almost unity at all loads. The efficiency and power factor of the IPM motor 
were 86.2% and 0.986, respectively for the output of 600 W. The efficiency-power-factor 
product is 85.0%. It is about 35% higher than that for the induction motor. These values of 
the IPM motor are very high when compared to those of the induction motor for the same 
600 W nameplate rating [3]. Figure 10 shows the computed and measured results of the 
input current versus the output power at 140V. It is shown that the agreement between the 
measured and computed results is excellent.  

 
Figure 9. Measured results of load performance characteristics of IPM motor 
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Figure 10. Computed and measured results of current versus output power of IPM motor 

In the figure 10, two kinds of computed curves are given, and the agreement is also good. It 
is used to determine the suitable value of the t. This value must be determined by taking 
into account the effects due to the space harmonics [5]. The space harmonics effect is also the 
source of the cogging and ripple torques in the IPM motor. It can be compensated by 
skewing the stator by one slot pitch. Therefore, t. should be smaller than to ts to include 
the influence of the ripple harmonics on the starting with ts, which is to move by one stator 
slot pitch at synchronous speed of the motor 

 

(1 / )
( / )s

s

ft
N p

 

 
 (34) 

where f is the line frequency, Ns is the number of stator slots. Herein, the following four 
values for the t are chosen: 208, 104, 52 and 26 μs are an eighth, a sixteenth, a thirty-second, 
and a sixty-fourth of ts, respectively. It is evident from Figure 10 that the choice of 208 μs is 
suitable at synchronous speed. However, this value is not sufficient in starting the IPM 
motor with large load inertia. 

Figure 11 shows the computed speed-time responses at no load condition with the eddy-
current brake disc coupled to the shaft, when the stator of the motor was supplied with 
balanced three-phase voltages at rated frequency of 50 Hz and rated voltage 140 V. The 
inertia of the disc is about 18 times the experimental rotor inertia, and the initial phase angle 
0 of (23-25) is /2 in the figure. It is seen that the agreement between the curves of 52 μs and 
26 μs is good and that those are superposed. The choice of a time step of 52 μs is suitable 
when the starting of the IPM motor. 

Figure 12 shows the computed and measured speed-time responses with time during run-
up and synchronizing period when t and 0 are 52 μs and /2, respectively. It can be seen 
that the good agreement between the measured and computed results exits. 
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Figure 11. Computed speed-time response of IPM motor 

 

 
Figure 12. Computed and measured speed-time response of IPM motor 

4.3. Steady-state synchronous and transient performance of IPM synchronous 
generator 

Figure 13 shows the experimental setup for measuring the steady-state load performance 
characteristics of the IPM generator shown in Figure 2. A 2.2 kW three-phase two-pole 50 Hz 
200 V squirrel-cage induction motor and a torque detector were used. The IPM generator 
has been driven at 1500 r/min by the PWM inverter-driven induction motor. 

Figures 14-17 show the terminal voltage and line current, respectively, when the IPM 
generator with the cage-bars was changed from no-load to resistance load of 15 Ω per phase 
in Figure 6 at t = 0s. The values of the resistance per phase for the maximum load was 15Ω. 
A synchronous motor has been used as the prime mover in the experiment. 
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Figure 13. Experimental setup for IPM synchronous generator 

Figures 14 and 15 show the measured and computed results of the terminal voltage, 
respectively. The phase angle of the terminal voltage in computing the terminal voltage and 
current is fitted to the experimental one. It is seen that the good agreement exists between 
the measured and computed results of the terminal voltage except the difference of the 
phase. This is the reason why the rotor speed lags synchronous speed in the experiment 
when load changes rapidly. 

Figures 16 and 17 show the measured and computed results of the line current, respectively. 
The line current is zero before t = 0s because of no-load. It is seen that the amplitude of the 
measured current was slightly pulsating because of the mechanical dynamic transient. On 
the other hand, a constant speed has been assumed in simulation. It is, however, seen that 
the good agreement exists between the measured and computed results of the current 
except the difference of the phase. 

 
Figure 14. Measured results of terminal voltage versus time in IPM generator 
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Figure 15. Computed results of terminal voltage versus time in IPM generator 

 

 
Figure 16. Measured results of line current versus time in IPM generator 

Figures 18 and 19 show the measured and computed results of the steady-state terminal 
voltage and line current respectively. It is seen that the good agreement exists between the 
measured and computed results of the terminal voltage and line current. It is shown that the 
higher harmonic components by the higher space harmonics [5] were included. 
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Figure 17. Computed results of line current versus time in IPM generator 

 

 
Figure 18. Steady-state terminal voltage versus time in IPM generator 

Figures 20-22 show the steady-state load characteristics. 

Figure 20 shows the measured and computed results of the terminal voltage versus the 
output. It can be seen that the good agreement between the measured and computed values 
exists except near maximum output.  
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Figure 19. Steady-state line current versus time in IPM generator 

Figure 21 shows the measured and computed results of the line current versus the output. It 
can be seen that the good agreement between the measured and computed values exists 
except near maximum output. 

Figure 22 shows the measured results of the efficiency versus output. The efficiency was 
85.8% at 600 W and 90% at 100W of light load. It is found that the efficiency is very high. 

 
Figure 20. Measured and computed results of terminal voltage versus output in IPM generator 
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Figure 21. Measured and computed results of line current versus output in IPM generator 

 
Figure 22. Measured results of efficiency versus output in IPM generator 

5. Conclusion 

A successful design of a high-efficiency small but novel IPM machine with cage bars was 
developed and tested. It is designed to operate with both high-efficiency line-start IPM 
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motor and generator with damper bars. The IPM motor can start and synchronize fully with 
large load inertia. Beside, the effects of the damper bars on stability during load change and 
efficiency were investigated. Time-stepping finite element analysis has been used to 
successfully predict the steady-state and transient performances of the prototype IPM 
machines. It is clear that cage bars are used effectively to start up in a line-start IPM motor, 
and to operate stably in the IPM generator with damper bars. It has been found that the 
proposed design has yielded successful simulation and experimental results. 
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1. Introduction 

The Hall effect was discovered in 1879 by the American physicist Edwin Herbert Hall. It is a 
result of the Lorentz force, which a magnetic field exerts on moving charge carriers that 
constitute the electric current [1, 2]. Whether the current is a movement of holes, or electrons 
in the opposite direction, or a mixture of the two, the Lorentz force pushes the moving 
electric charge carriers in the same direction sideways at right angles to both the magnetic 
field and the direction of current flow. As a consequence, it produces a charge accumulation 
at the edges of the conductor orthogonal to the current flow, which, in turn, causes a 
differential voltage (the Hall voltage). This effect can be modeled by an anisotropic term 
added to the conductivity tensor of a nominally homogeneous and isotropic conductor. 

The Hall effect is widely used in magnetic field measurements due to its simplicity and 
sensitivity [2]. Hall sensors are readily available from a number of different manufacturers 
and are used in various applications as, for example, rotating speed sensors (bicycle wheels, 
gear-teeth, automotive speedometers, and electronic ignition systems), fluid flow sensors, 
current sensors or pressure sensors.  

Recently, a large dependence of the resistance on magnetic fields, the so-called 
extraordinary magnetoresistance (EMR), was found at room temperature in a certain kind of 
semiconductor/metal hybrid structure [3]. Sharing a similar origin with the Hall effect, the 
EMR effect is mainly based on the Lorentz force generated by a perpendicularly applied 
magnetic field, which causes a current deflection. This results in a redistribution of the 
current from the metal shunt into the semiconductor causing a resistance increase. It is 
important to note that the fundamental principle of EMR is the change of the current path in 
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the hybrid structure upon application of a magnetic field rather than the change of 
magnetoconductivity σ of either the semiconductor or the metal [4-5]. This effect has drawn 
much attention due to its potential advantages over other solid-state magnetic field sensors 
[6-9]. Noise is rather low in EMR devices, since they are made of nonmagnetic materials, 
and there is no contribution from magnetic noise as it is in contemporary tunnel 
magnetoresistance or giant magnetoresistance devices [10], and there is less thermal noise 
than in Hall sensors due to the lower resistance provided by the conducting shunt. The 
saturation field exceeds 1 T, resulting in a large working range and, compared to Hall 
sensors, EMR sensors provide a higher sensitivity. 

EMR devices have been fabricated using high-mobility and narrow-gap semiconductors 
shunted by a highly conductive metal bulk [7]. These properties of the semiconductor 
guarantee that the material shows a large Lorentz force along with a comparatively good 
conductivity. Experiments on the EMR effect were initially performed in a macroscopic 
composite Van der Pauw disk made of a semiconductor disk with a concentric metallic 
circular inhomogeneity embedded (Figure 1(a)), and four electrodes were used to apply 
current and measure voltage. Though this structure provided good results, its realization in 
microscopic and nanoscopic length scales is unreasonable. Using bilinear transformation, a 
bar-type geometry, which is a semiconductor bar shunted by a metal stack on one side 
(Figure 1(b) and (c)), has been derived from the Van der Pauw disk showing a similar EMR 
effect and being simpler in terms of fabrication [11]. 

 
Figure 1. 4-contact EMR devices with (a) Van der Pauw disk geometry, (b) symmetric bar geometry and 
(c) asymmetric bar geometry. The dark lines labeled with I+, I- V+ and V- represent the two current 
electrodes and two voltage probes, respectively. The dashed lines represent the central axes of the 
devices. 

The EMR effect is an extrinsic property that strongly depends on the geometry of the device 
and the placements of the electric contacts. Several studies have been carried out in order to 
investigate the influence of contact configurations and the geometry of the metallic region 
on the performance of the EMR device [12-14]. The typical 4-contact device consists of a high 
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mobility semiconductor bar with a metal shunt attached to one side. With respect to the 
placement of the two current electrodes (I) and the two voltage electrodes (V), two major 
kinds of four-contact configurations can be distinguished: IVVI (Figure (b) and (c)) and 
VIIV, where the voltage electrodes are between the current electrodes or vice versa, 
respectively.  

Both the Hall and EMR effects are based on the Lorentz force, which can be considered by 
introducing an anisotropic conductive behavior in the material models. Depending on the 
characteristics of the materials being used and the complexity of the device geometry, the 
analytical calculation of the Hall and EMR effect can be very complicated. Several studies 
have shown that the finite element method (FEM) provides a proper tool to model and 
simulate the Hall and EMR effects.  

In this chapter, we will introduce the 2-D and 3-D FEM models, which describe the 
anisotropic behavior of the conductors under an external magnetic field, and which can be 
applied to both Hall and EMR effects. Especially in case of the EMR effect, the 3-D 
simulations provide a considerably higher accuracy than the 2-D ones due to the 
inhomogeneous and unsymmetrical structures used. The developed 3-D model is also 
verified by experimental results. The models will be applied to study the effects of geometry 
on the performance of Hall and EMR devices. Thereby, the focus will be put on the EMR 
effect, since it has been much less investigated so far. 

2. Theories of Hall and EMR effect 
Both the Hall and EMR effects result in an anisotropic conductivity, which is caused by the 
magnetic field through the Lorentz force. The force acting on a single electric carrier can be 
expressed as  

 q( ( ))  F E v B  (1) 

where F is the force vector acting on the charged carrier, q is the charge of the carrier, E is 
the vector of the applied electric field, v is the instantaneous drift velocity vector of the 
moving carrier and B is the magnetic field vector. The term qE is called the electric force, 
while the term qv × B is called the magnetic force Fm. 

In a solid conductor as shown in Figure 2, the current expressed in terms of the drift velocity 
is 

 I = × A = nq wdj v  (2) 

where j is the current density and n is the number of charge carriers. The cross-section area 
of the conductor is A = wd, whereby w and d are the width and thickness of the conductor, 
respectively. Then the drift velocity is found as 

 
nqwd


Iv  (3) 
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Figure 2. Schematic view of the bar (n-type) Hall device. A constant current, I, is applied as well as a 
constant magnetic field, H, perpendicular to the surface. This will cause an accumulation of charge 
carriers transverse to the current direction and a Hall voltage, VH. Fm and Fe indicate magnetic force and 
electric force, respectively. Note that the direction of the current I in the diagram is that of conventional 
current, so that the motion of electrons is in the opposite direction. 

When a magnetic field is applied in the direction perpendicular to the current flow, the 
Lorentz force causes deflection of the current. As a consequence, charges of opposite sign 
accumulate at two surfaces or edges of the conductor orthogonal to the current flow creating 
an electric field, the Hall field EH. When the magnetic force Fm is equivalent to the electric 
force Fe generated by the Hall electric field, an equilibrium state is achieved. In this case  

 m e= HV q
q

w
  F F v B  (4) 

VH is the output voltage caused by the electric field of the accumulated charges. Using 
equation (3) and (4), VH can be expressed in terms of the applied current and the magnetic field 

 H
IBV =

nqd
 (5) 

For n-type semiconductors the charge carrier is negative (electron) and equation (5) can be 
substituted as 

 H
-IBV =
ned

 (6) 

where e is the electron charge. 

In case of p-type semiconductors, VH would, then, be positive for positive values of I and B. 
Another way of describing this is by means of the Hall angle, θH (Figure 3). The direction of 
the current is collinear with the applied electric field E, but not collinear with the total 
electric field Et, because of the contribution from the Hall electric field EH. The angle 
between the total electric field and the applied electric field is called the Hall angle, θH,  
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 H
H arctan 

E
j

 (7) 

and for small values it is approximated by 

 H
H 

E
j

 (8) 

 
Figure 3. The Hall electric field EH generated for n-type and p-type conductor based Hall devices. j is 
the current density, θH is the Hall angle indicating the difference between the applied electric field and 
the total electric field. 

Let us suppose we have a semiconductor with a metal stack as an inhomogeneity embedded in 
it, as shown in Figure 4(a). The conductivities of the semiconductor and the metal are denoted 
as σs and σm, respectively, and σm >> σs. In low magnetic fields, the current flowing through the 
conductor is concentrated into the metallic region with the metal acting as a short circuit. The 
current density j is parallel to the total electric field E as indicated in Figure 4(a). The metal 
inhomogeneity is essentially an equipotential body due to its high conductivity. Thus, the 
direction of E at the semiconductor/metal interface is normal to the interface. At high magnetic 
fields, the current is deflected by the Lorentz force, which results in a directional difference 
between j and E by the Hall angle. For sufficiently high fields this angle approaches 90° in 
which case j is parallel to the semiconductor/metal interface and the current is deflected 
around the metal inhomogeneity which acts like an open circuit (Figure 4(b)). The transition of 
the metal from a short circuit at low fields to an open circuit at high fields gives rise to the very 
large magnetoresistance or the so-called extraordinary magnetoresistance effect.  

 
Figure 4. The current flow distribution in a semiconductor/metal hybrid. The gray and yellow areas 
express the semiconductor and metal, respectively. The dark lines show the paths of current. (a) At low 
magnetic fields, the current is parallel to the electric field E and the metal acts as a short circuit. (b) At 
high field, the current is mainly flowing in the semiconductor, the hybrid acts as an open circuit.  
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In the ideal case, the Hall effect is independent of geometry (compare equation (5) and (6)). 
However, the EMR effect is strongly geometry dependent, and analytical models for the EMR 
effect are highly complicated, especially when a complex geometry is considered. Therefore, 
the Finite Element Method (FEM) has been employed before to study the EMR effect [4, 14-16]. 

3. FEM models for Hall and EMR effect 

The conductivity σ of a homogenous, isotropic solid conductor is given by  

 1 = e e h h(n μ + n μ )q


  (9) 

where ρ is the resistivity, ne and nh are the densities of electrons and holes and μe and μh are 
the mobility of electrons and holes, respectively.  

High sensitivity Hall and EMR devices are commonly made from n-type semiconductors 
since the mobility of electrons is typically much larger than that of holes yielding larger 
effects [17]. Therefore, only the dominant carrier-electron needs to be taken into 
consideration in the FEM model. 

By direct integration of the Boltzmann equation [18], the current density due to carriers at a 
single quadratic energy extremum is given by 

 0( )
en e


 
j Hj E  (10) 

where σ0 = neeμ is the conductivity without magnetic field, and μ is the mobility tensor. In an 
isotropic conductor the mobility components are identical for all spatial axes 

 e

1 0 0
0 1 0
0 0 1

μ
 
   
  

  (11) 

According to Ohm’s law, the vector of the current density is expressed as 

 ( ) j H E  (12) 

By re-arrangment of equation (10) into the form of equation (12), the magnetoconductivity 
tensor σ(H) is found to be 

    -1-1 en e H H   (13) 

where H is a magnetic field matrix defined as  
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Hx, Hy, and Hz are the components of the applied field in x-, y-, and z-directions, 
respectively. By substitution of equations (11) and (14) into equation (13), the components of 
the corresponding magnetoconductivity tensors are found to be 
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 (15) 

Since Hall and EMR devices are made of thin film structures, the thickness (z-direction) is 
typically neglected, and the complex 3-dimensional magnetoconductivity model is reduced 
to a concise 2-D model, where only the carrier transport in the x-y plane and a 
perpendicular magnetic field Hz are considered. By substituting x- and y-components of the 
magnetic field in equation (14) with zero, the magnetoconductivity of a 2-D model is found 
to be  

 0
2

1 - 0
( )= 1 0

1+ 0 0 1

β
σ

σ H β
β

 
 
 
  

 (16) 

where β = μe·Hz. 

In a steady state condition, the problem of determining the electrostatic potential ϕ(x,y,z) in 
the conductor reduces to the solution of a Laplace’s equation:  

 ( ) 0x,y,z      (17) 

which can be solved by means of the finite-element method under specific boundary 
conditions and initial conditions [19].  

4. Finite-element simulation of Hall effect 

In this section, a cross-shaped hall device is investigated by means of the FEM using the 2-D 
model. The model of the Hall device consists of a semiconductor cross with the geometry 
shown in Figure 5. The dimensions of the 2 arms are 30×10 µm2. The tips of the arms are 
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connected with narrow metal blocks acting as electric contact pads. The sensing area is 
defined by the intercross region of the two arms, which has an area of 10×10 µm2. The 
material parameters are: μs = 4.55 m2V-1s-1 and ns = 2.55×1022 m-3 for the semiconductor; and 
μm = 5.3×10-3 m2V-1s-1 and nm = 5.9×1028 m-3 for the metal (gold). 

 
Figure 5. Schematic view of a cross-shaped Hall device. I+, I-, V+, and V- indicate the two current leads 
and two voltage probes, respectively.  

A current of 100 µA is applied as boundary conditions at I+ and I- current pads, which is a 
feasible assumption based on the electromigration limit of Au as well as heating constraints. 
The I- current pad is grounded. All other outer boundaries were set to electrical insulation  
(σ = 0, Neumann condition). The models were meshed with free triangular elements, which 
conform well to a large range of model geometries, and consisted of approximately 2.6×104 

elements and 5.3×104 degrees of freedom. The electric potential along the device was 
obtained by solving equation (17). Figure 6 shows the potential distribution inside the 
device with and without application of a magnetic field. The Hall voltage is calculated as the  

 
Figure 6. Potential distribution inside the Hall device (a) without and (b) with application of a magnetic 
field. The color bar indicates the strength of the voltage potential (V). The current flow is from the left to 
right side. 
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Figure 7. The Hall voltage as a function of the magnetic field calculated by an analytical and by FEM. 
The inset shows the error between the results from these two methods. 

difference of the two potential values at voltage pads, i.e. VH = ϕ (V+) - ϕ (V-). Figure 7 shows 
the Hall voltage as a function of the magnetic field. The result from an analytical calculation 
is also provided for comparison. Within the magnetic field range of ±5 T, the analytical 
result is consistent with the one of the FEM showing a linear relation with the field change. 
The inset of Figure 7 shows the error between the results obtained with these two methods. 
The error is found to be only 1% to 3%, which shows the good agreement of the FEM with 
the analytical method.  

5. Finite-element simulation of EMR effect 

5.1. FEM simulation with 2-D model 

In this section, a semiconductor/metal hybrid EMR device made of a semiconductor bar 
shunted by a concentric metallic inclusion (see Figure 4) is simulated with the 2-D FEM 
model in order to investigate the principle of the effect. The material parameters used in the 
simulation were the same as in section 3, i.e. μs = 4.55 m2V-1s-1, ns = 2.55×1022 m-3, μm = 5.3×10-3 
m2V-1s-1 and nm = 5.9×1028 m-3. 

The device model consists of a semiconductor with an area of 100×100 µm2 and a concentric 
metallic disk with a radius of 30 µm. A current density of 109 A/m2 is applied to the left edge 
of the semiconductor as the boundary condition, and the right edge is grounded. All other 
outer boundaries were set to electrical insulation.  

The current distributions in the semiconductor/metal hybrid device at various external 
magnetic fields are shown in Figure 8(a)-(d). At zero magnetic field (Figure 8(a)), the current 
flow is predominantly concentrated in the metal shunt, which can be seen clearly from the 
high current density in the metallic region and the low one above and below the disk in the 
semiconducting region. The electric field lines are perpendicular to the semiconductor/metal 
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interface and the current flow is parallel to the electric field lines. As the result, owing to the 
high conductivity of the metal, the current distribution at zero field constitutes the low 
resistance state of this structure. 

As the external field rises to 0.1 T (Figure 8(b)), the current is still predominantly flowing 
through the metal shunt; however the magnetic field deflects the current path to some 
extent. Now, a larger proportion of the current is being forced to flow around the conductor 
through the semiconductor region of high resistance. Due to the current deflection, the 
direction of the electric field, which is still perpendicular to the surface of the metal shunt, 
and the one of the current are not parallel anymore and deviate from each other by the Hall 
angle. 

 
Figure 8. The current distributions in the semiconductor/metal hybrid device at external magnetic 
fields of (a) 0 T, (b) 0.1 T, (c) 0.5 T, and (d) 5 T. The dark solid lines indicate the paths of current. The 
white lines are the electric field lines. The color bar indicates the strength of the current density from 0 
(blue) to 1.5×106 A/m2 (red).  

The Hall angle increases as the magnetic field becomes stronger. At 0.5 T (Figure 8(c)) 
highest current density is no longer observed in the metal region since the current is forced 
to flow through the semiconductor despite the higher resistance.  
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Finally, at a very strong applied field of 5 T (Figure 8(d)), he Hall angle approaches 90° 
forcing the current to flow almost entirely around the metal inhomogeneity. This results in a 
substantially higher resistance of the device compared to the case of no magnetic field 
applied. 

5.2. FEM simulation with 3-D model 

In this section, the EMR effect in a bar-type device is simulated under spatial magnetic fields 
with a 3-D FEM model.  

In order to validate the simulation results, they are compared with experimental ones 
obtained from an EMR device specifically fabricated for this purpose. The EMR device 
consists of a semiconductor bar of 1.5 µm in thickness, 300 µm in length, and 23 µm in 
width (Figure 9). The metal shunt is a Ti (50 nm)/Au (250 nm) stack with a width of 80 µm. 
An overlap, which typically arises due to the fabrication process, of 3 µm exists between the 
semiconductor and metal shunt. Two metal leads with a length of 5 µm are located at the 
two corners of the semiconductor bar to apply the current and measure the voltage V. At the 
metal/semiconductor interface, the device showed a contact resistivity of 10-7 Ωcm2, and this 
value was also implemented in the model. 

 
Figure 9. A bar-type EMR device with overlap between metal and semiconductor (typical for practical 
devices). The current injection direction is indicated by the solid arrows. The thickness of metal and 
semiconductor are denoted as tm and ts, respectively, and the width of metal and semiconductor are 
denoted as wm and ws, respectively. wo represents the overlap between metal and semiconductor, note  
wd + wo = ws. 

A constant current with the density of 6.67×107 A/m2 (corresponding to 100 µA) was applied 
as the boundary conditions at the faces of the current leads. All other outer boundaries were 
set to be electrically insulating (σ = 0). The model was meshed with tetrahedral elements, 
whereby the mesh density was varied adaptively in order to account for the large 
differences of the dimensions of the structural components. The material parameters used in 
the simulation were the same as the ones of the experimental sample: μs = 0.82 m2/V·s and  
ns = 5.6×1022 m-3 for the semiconductor, μ = 5.30×10-3 m2/V·s and n = 5.90×1028 m-3 for gold, 
and μ = 2.90×10-3 m2/V·s and n = 5.12×1027 m-3 for titanium. Homogenous magnetic fields in x, 
y, and z direction changing from -1 to 1 T with steps of 0.1 T were applied. The result of a 2-
D FEM simulation with a magnetic field applied in z-direction is also provided for 



 
Finite Element Analysis – New Trends and Developments 212 

comparison, in which the width of the semiconductor is 20 µm and, due to the limitations of 
the 2-D model, only a gold shunt without a Ti adhesion layer is considered. 

The EMR ratio, in general, is expressed as  

 ( ) R(0) ( )( ) , ( )
(0)

R VMR R
R I


 
H HH H  (18) 

where R(H) is the resistance at spatial magnetic field H and R(0) the resistance at zero 
magnetic field (R(0) = R(H = 0). V(H) is the voltage at magnetic field H calculated from the 
solution of equation (17), and I is the value of current injected into the device. The output 
sensitivity δ is defined as the change of the output voltage with respect to a small variation 
ΔH of the field 

 ( ) ( )( ) V V   



H H HH

H
 (19) 

In the case of the 2-D simulation, the magnetic field vector needs to be replaced by the 
perpendicular field component Hz in z-direction. 

Figure 10 shows the simulated current paths in the EMR device as a function of external 
fields in different directions. (Note, different dimensions than the ones mentioned above are 
used for the device in order to provide clear illustrations). The dark streamlines show the 
current flow in the device. Without an external field, the current flows from the 
semiconductor into the metal, whereby a portion of the current flows through the overlap 
between the semiconductor and metal. As a magnetic field is applied, deflections of the 
current paths occur due to the Lorentz force. It is important to note that in case of magnetic 
fields applied in the x-direction (Figure 10 (a)), the current redistributions for positive and 
negative fields are asymmetric with respect to the current distribution at zero field, which is 
a result of the asymmetric geometry of the structure in x-view. However, in case of magnetic 
fields applied in z-direction or y-direction, current redistribution is symmetric. 

Figure 11(a) shows the EMR ratio as a function of the perpendicular magnetic field Hz. Both 
the 2-D and 3-D FEM models provide accurate results for smaller field values. At higher 
fields the 3-D model is considerably more accurate than the 2-D model. For example, the 
EMR ratios at Hz = 1 T are 59.1%, 61.8%, and 76.2% from experimental measurement, 3-D 
FEM and 2-D FEM calculation, respectively. The larger EMR effect found with the 2-D 
simulation is mainly due to neglecting the lower conductivity of the titanium layer 
compared to gold and the semiconductor/metal overlap, which results in a wrong 
estimation of the device’s resistance at zero field. The dependences of the EMR ratio to 
magnetic fields applied in planar directions are shown in Figure 11(b). The ratios are 11.5% 
and 8.2% at Hx = 1 T and 9.0% and 7.4 % at Hy = 1 T for experimental measurements and 3-D 
FEM calculations, respectively. Their values are about 15% to 20% of the ones obtained for a 
perpendicular field. A stronger EMR effect is observed at Hx than at Hy. This can be 
attributed to the difference in the strength of the Lorentz force acting on the carriers near the 
interface between the semiconductor and metal shunt, which is the region where the 
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Lorentz force has the largest impact on the current redistribution. The current density at the 
interface is highest near the source and drain contacts, where the current flow is mainly in y-
direction. Therefore, the Lorentz force on the carriers at the interface is larger when the 
magnetic field is in x-direction rather than in y-direction. Also, the magnetoresistance curve 
for the fields in x-direction is asymmetric due to the asymmetric geometry.  

 
Figure 10. Current redistributions at magnetic field in (a) x-direction (left side view of Figure 9), (b) y-
direction (front view of Figure 9), (c) z-direction (bottom view of Figure 9). The solid lines show the 
path of current flow. The yellow block represents the metal shunt and the grey block the semiconductor. 
(tm = 2ts, wm = ws, wo/ ws = 50%). 

 
Figure 11. EMR ratios as functions of (a) perpendicular field Hz and (b) planar fields Hx and Hy. 
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The simulated results for planar fields are slightly smaller than the experimental ones. We 
assume this can be attributed to the defects in the semiconductor, which are more abundant 
in the vicinity of the interface. Since the current flow is not uniform in regions with defects, 
the current component in z-direction is larger as compared to the ideal case causing 
additional current redistribution due to Lorentz forces in case of planar fields. 

6. FEM analyses on geometric dependence of EMR effect 

As mentioned before, the EMR effect strongly depends on the geometry of the device and 
the locations of the electrodes. In this section, the performance of a bar-type EMR device is 
simulated for different device geometries and electrode locations. The performance is 
evaluated with regard to the output sensitivity (equation (19)) of the device, rather than the 
often-analyzed EMR ratio (equation (18)), since it is more relevant than the EMR effect for 
potential applications ranging from reading heads to smart biomedical sensors. 

The model of the bar-type EMR device consists of a semiconductor bar shunted by a metal 
stack. The structure and geometric parameters of the device model are shown in Figure 12. The 
device is symmetric about the y-axis, and the x-axis is placed along one of the edges of the 
semiconductor. The widths of the semiconductor and metal and the lengths of the device are 
denoted Ws, Wm, and L, respectively. The current leads I and voltage probes V were placed 
along the edge of the semiconductor bar. Depending on their arrangement, the contact 
configuration can be classified into two types, namely, IVVI (Figure 12(a)) and VIIV (Figure 
12(b)). While the two outer contacts are placed at the edges of the semiconductor, the locations 
of the inner ones are varied, whereby αVL, αVR, αIL and αIR are the distances of the left and right 
voltage probes and current leads in IVVI and VIIV configuration, respectively, from the y-axis. 

 
Figure 12. Geometry of the semiconductor/metal (a) IVVI and (b) VIIV configurations, where I and V 
represent current lead and voltage probe, respectively.  
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The material parameters are: μs = 4.55 m2V-1s-1 and ns = 2.55×1022 m-3 for the semiconductor, 
and μm = 5.3×10-3 m2V-1s-1 and nm = 5.9×1028 m-3 for the metal (300 K). The width Wm is 15 µm 
while Ws and L are varied during the simulation. A width of 0.1 µm is assigned to the 
current leads, while the voltage probes were considered as a point-like contact with zero 
width. 

A current of 10 µA is applied as the boundary conditions at I+ and I-, which is a feasible 
assumption based on the electromigration limit of the metal as well as heating constraints. 
The current lead I- is grounded. All other outer boundaries are electrically insulating (σ = 0, 
Neumann condition), while the interface between the semiconductor and metal is modeled 
with a contact resistivity of 10-8 Ω·cm2, which is a prerequisite for showing a strong EMR 
effect [15]. The models are meshed with free triangular elements, which conform well to a 
large range of model geometries, and consist of approximately 1.5×105 elements and 3×105 

degrees of freedom. The mesh density is varied adaptively.  

As pointed out before, the EMR effect and the output sensitivity of the device are strongly 
geometry dependent. Hence, the shape of the device and the placements of current leads 
and voltage probes are critical. We investigate the relationships between the output 
sensitivity and different semiconductor length/width ratios α = L/Ws, the placements of the 
voltage probes in an IVVI configuration, and the placements of the current leads in a VIIV 
configuration as a function of the magnetic field. The output sensitivity is calculated using 
equation (19) with ΔH = 1×10-4 T. 

6.1. Width of the metal shunt 

In this section, the influence of the width of the metal shunt is studied. An IVVI 
configuration is employed with a semiconductor of width Ws = 5 µm, length L = 75 µm, and 
symmetrically placed voltage probes with αVR = -αVL = 12.5 µm. The width of the metal shunt 
Wm is varied from 0.01×Ws (50 nm) to 50×Ws (250 µm). Figure 13 shows the sensitivity as a 
function of different Wm/Ws ratios at 0.05T and 1T. As can be seen, the sensitivity increases as 
the width of the shunt increases up to a certain value before it saturates. However, when Wm 
is thicker than 0.1×Ws, the influence is rather small with an increase of less than 1% for 
strong fields and around 3% for weak fields, indicating that the current is mainly confined 
to a thin layer in the metal shunt close to the semiconductor. Similar results were found for a 
model with a different semiconductor bar of Ws = 3 µm using the same values for all other 
parameters. Hence, it can be concluded that the dimension of the metal shunt should be 
larger than 0.1Ws in order to maintain a good performance of the EMR device. A thickness 
larger than 5Ws is not necessary due to its negligible influence on the device sensitivity. In 
the following simulations, a value of Wm = 5Ws is being used. 

6.2. Length/width ratio of the device 

In order to investigate the influence of the length/width ratio α, a device with symmetric 
IVVI configuration is studied. The length L is varied from 30 µm to 105 µm with a step size 
of 3 µm in order to obtain different values of α, while Ws and αVR are kept at 3µm and L/6, 
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respectively. The width of the metal is kept at Wm = 5Ws = 15 µm. Figure 14 shows the 
sensitivity as a function of α at magnetic fields of 0.05 T, 0.5 T, and 1 T. The optimum value 
of α with respect to sensitivity shows some dependence on the magnetic field. Values of 5, 
10 and 20 provide maximum sensitivity for magnetic fields of 0.05, 0.5 and 1 T, respectively. 
The optimal value increases for stronger fields. This can be understood by the help of the 
insets in Figure 14, which indicate the relation between the length/width ratio and the 
current path in the EMR device. In very simplified terms, if no magnetic field is applied, the 
current flows straight through the semiconductor into the conductor shunt via the shortest 
possible way. Due to the Hall angle θ resulting from a magnetic field, the current path will 
be deflected into the semiconductor, which causes an increased resistance. It’s important to 
keep in mind that a given external field will result in a certain Hall angle θ, independent of 
the geometry. In case of a low value α, the deflected current will be confined to the 
semiconductor bar (Figure 14 inset (a)). As α increases, the current path through the 
semiconductor becomes longer and, eventually, reaches the interface between the 
semiconductor and metal, leading to the optimal value of α, at which small changes of the 
magnetic field cause the largest changes in resistance (Figure 14 inset (b)). It can be seen 
from Figure 14 inset (c) that a further increase in length only increases the path of the 
current flow through the conductor, which doesn’t contribute to the resistance. The 
sensitivity decreases as α increases. Since the Hall angle is larger at stronger fields, the 
optimal value of α is larger at stronger fields.  

 
Figure 13. Output sensitivity of the EMR device as a function of the ratio Wm/Ws (Ws = 5 µm)at H = 0.05 
and 1 T. The arrows indicate the corresponding axis. 

The investigation of the length/width ratio is also carried out with a model of varied width 
Ws and fixed length L = 75µm. This simulation provided exactly the same results as the 
previous one indicating that the scale of a device has no influence on the performance of an 
EMR device. Therefore, EMR devices can be fabricated according to the spatial resolution 
requirements of the specific applications or restrictions due to the fabrication technology. 
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This not only gives flexibility with respect to design but also higher accuracy for specific 
applications. 

 
Figure 14. Sensitivity as a function of the length/width ratio α at various external fields. The insets 
show the current deflection in the semiconductor bar of the EMR device with (a) low length/width α,  
(b) optimal α, (c) large α under a constant Hall angle θ. The dashes indicate the deflected current path 
injected from the inlet current lead. The dark thick lines represent the interfaces between semiconductor 
and metal (not shown here). 

6.3. Placement of voltage probes in IVVI configuration 

An IVVI device with length L = 45 µm and width W = 3 µm (α = 15) is simulated to 
investigate the influence of the placement of the voltage probes. Here, αV is used to denote 
the distance of the voltage probes from the y-axis (Figure 12 (a)). Firstly, a symmetric 
configuration is used, i.e. αV = αVL= αVR. αV is changed from 0.5 to 22.5 µm in steps of 1 µm, 
and its influence on the sensitivity is shown in Figure 15. The sensitivity increases as the 
probes move further away from the y-axis at both weak and strong fields, and it can be 
concluded that the larger the separation of the probes the higher the performance. It is 
interesting to note that there is a considerable increase in sensitivity as the two probes 
approach their respective corners. In order to get a better understanding of this effect, Figure 
16 shows the electric potential distribution along the edge of the semiconductor bar for 
different magnetic fields. Most of the potential change occurs in the semiconductor close to 
the current leads. This is due to the smaller cross-section available for the current to pass 
through, resulting in higher current densities and, consequently, larger electric fields. As the 
magnetic field increases, the current density along the right edge of the semiconductor 
increases even further, while on the left edge of the semiconductor the opposite happens 
(compare Figure 10(c) for positive fields). In between, the two edges, at higher fields, the 
amount of current flowing through the semiconductor increases thereby facing an increased 
resistance and, hence, larger potential differences are observed. Since the largest changes of 
the potential arise around the corners, higher sensitivity can be obtained by placing the 
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voltage probes closer to the corners (Figure 15). Hence, a symmetric EMR sensor with high 
sensitivity can be reduced to a two-contact device where the contacts are utilized for current 
injection as well as voltage measurement.  

 
Figure 15. Sensitivity as function of the voltage probe placement at various external fields for the EMR 
device with symmetric IVVI configuration. 

 
Figure 16. The potential distribution along the edge of the semiconductor bar in the EMR device at 
different magnetic fields. 

It has previously been reported that an asymmetric contact configuration increases the EMR 
effect [12]. In order to study the influence of an asymmetric arrangement of the voltage probes, 
an IVVI configuration is simulated with αVR fixed at 7.5 µm while αVL is varied from -22.5 µm 
to 22.5 µm. The current is injected at the current lead with varying position. Figure 17 shows 
the sensitivity as a function of αVL. Compared to the results found for the symmetric 
arrangement (Figure 15), the maximum sensitivity at high field (1 T) has reduced. In the case of 
low fields, the sensitivity has slightly increased due to the asymmetric arrangement. 
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Figure 17. Sensitivity as a function of the placements of voltage probes at various external fields for the 
EMR device with asymmetric IVVI configuration. The arrow indicates the location of the fixed voltage 
probe. 

6.4. Placement of current leads in VIIV configuration 

The effect of the placements of the current leads αI in a symmetric VIIV device is studied 
using the same geometric parameters for the model as before in section 5.3. αI denotes the 
distance of the current leads from the device’s center (Figure 12(b)). The sensitivity depends 
on αI in a very similar way as it did on αV in the case of the IVVI configuration and the same 
trends can be observed (Figure 18). Again, this result shows the high sensitivity that can be 
obtained by using a simple two-contact electrode arrangement. A study of asymmetric 
current lead arrangement shows that the sensitivity can only be improved for low magnetic 
fields (Figure 19), which is also similar to what is found for the asymmetric IVVI 
configuration. The large change in sensitivity as the leads are placed closer to the corners of 
the device can be explained in the same way as in case of the IVVI configuration. It can be 
concluded that VIIV and IVVI configurations are very similar in general and optimally 
utilized with two electrodes at the corners of the semiconductor.  

7. Finite-element analysis on the effect of the semiconductor/metal 
interface 

In this section, an IVVI bar-type EMR device is investigated. The geometry and dimensions 
of the device model are: Wm = 15 µm, Ws = 3 µm, L = 75 µm and α = 25 µm. The current leads 
(I+, I-) have a width of 0.1 µm. The voltage probes (V1, V2) are considered as a point-like 
contact. A current I of 100 µA is applied through setting the boundary condition of the 
current leads. At the semiconductor/metal interface, different values of the contact 
resistivity ρ between 10-11 Ω·cm2 and 10-5 Ω·cm2 are applied. In practice, 10-8 Ω·cm2 is 
considered a very low ohmic contact resistivity. 
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Figure 18. Sensitivity as a function of the placement of the current leads at various external fields for 
the EMR device with symmetric VIIV configuration. 

 

 
Figure 19. Sensitivity as a function of the placement of current leads at various external fields for the 
EMR device with symmetric VIIV configuration. The arrow indicates where the location of the fixed 
current lead. 

The model was meshed with free triangular elements and consisted of approximately 
6.8×105 elements and 1.4×106 degrees of freedom. The mesh density was varied adaptively. 

The external magnetic field H of 1 T is applied in the positive z-direction to the model. The 
voltage output value of V(H) between the probes V1 and V2 was evaluated and the EMR 
effect and sensitivity were calculated by the help of equation (18) and (19).  
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Figure 20 shows the distribution of the current density in devices with different contact 
resistivities at H = 0 T and H = 1 T. The current density is symmetric in case of H = 0 T 
whereas it is deflected by the Lorentz force at H = 1 T yielding increased density in the 
semiconductor and decreased density in the metal. With a low contact resistivity (10-8 

Ω·cm2), the current distribution in the device at zero and high fields are almost the same as 
in the ideal case with no contact resistivity. As the resistivity increases at the 
semiconductor/metal interface, it acts like a barrier and the current is increasingly inhibited 
to enter the metal shunt. Since the current density becomes larger in the semiconductor 
region, the value of R(0) increases, thereby reducing the EMR effect. These dependencies can 
also be seen in Figure 21, which shows the current density distribution for the y/z-cross-
section along the y-axis. It is worth to note that the area under each curve is identical to I. As 
the contact resistivity increases, the current density in the semiconductor increases, and a 
similar effect is obtained by increasing the magnetic field. 

 
Figure 20. Current density distributions in different devices with various contact resistivities. (a) Ideal 
contact (no resistivity), (b) 10-8 Ω·cm2, (c) 10-5 Ω·cm2. The color bar represents the strength of the current 
density (A/m2). Dark streamlines show the path of current. Left column: zero external field. Right 
column: external field is 1 T. 

Figure 22 shows the EMR effect and the sensitivity as functions of the contact resistivities at 
H = 1 T. Nonlinear curve fitting is applied to find the exponential functions that approximate 
both the EMR effect and the sensitivity. For contact resistivities between 10-11 Ω·cm2 and 10-7 
Ω·cm2, the EMR effect is almost constant. In case of the sensitivity, this range is from 10-11 
Ω·cm2 to 10-8 Ω·cm2. As the contact resistivity increases beyond 10-7 Ω·cm2 and 10-8 Ω·cm2, 
the EMR effect and the sensitivity, respectively, decrease exponentially. In particular, a 
device with contact resistivity of 10-11 Ω·cm2 shows an EMR effect of 1.1×105 %. The EMR 
effect is 1.1×106 % for the device with a contact resistivity of 10-8 Ω·cm2 and it decreases to 
6.0×105 % and 423 % for the devices with 10-6 Ω·cm2 and 10-5 Ω·cm2, respectively. The EMR 
effect is almost reduced by 95% compared to the ideal device (10-11 Ω·cm2) when the contact 
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resistivity increases to 10-6 Ω·cm2. Even in this case, the value is comparably high with an order 
of magnitude larger than values reported for contemporary GMR sensors. However, the EMR 
effect in the device with 10-5 Ω·cm2 contact resistivity is only 0.4% of the one of an ideal device. 
For a contact resistivity lower than 10-8 Ω·cm2, the sensitivity shows a value of app. 8.6 mV/T. It 
drops rapidly as the contact resistivity increases and has a value of 7.4 mV/T at 10-5 Ω·cm2. 
 

 
Figure 21. Current density distribution along the symmetry axis (y-axis) of the EMR devices with 
different values of the contact resistivity of the interface between semiconductor (SC) and metal at 
magnetic fields of (a) 0 T and (b) 1 T. 

 

 
Figure 22. EMR effect and sensitivity as a function of the contact resistivity at 1 Tesla (MR ratio and 
contact resistivity axes are logarithmic). 

8. Conclusion 

In this chapter, we discussed the basic concepts of the Hall effect and EMR effect. We 
introduced a mathematical model to describe the inhomogeneous conductivity of a 
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conductor under the application of a magnetic field, which can be used to simulate both 
effects. The model is applicable for 2-D simulations as well as 3-D simulation. Especially for 
complex designs, the FEM is a convenient technique to carry out the simulation. While in 
case of Hall devices a 2-D simulation is normally sufficient, the structure of EMR devices 
requires a 3-D simulation in order to obtain accurate results. Specifically, for the EMR ratio 
we found an error of almost 30 % at 1T for the 2-D model and about 5 % for the 3-D model 
compared to experimental results. The model has been employed to simulate Hall and EMR 
devices. The focus of the chapter has been put on the investigation of EMR devices, since, 
compared to Hall devices, they have not been studied yet. 

The modeled EMR device is of bar-type geometry since this is the most promising one for 
future applications taking into account device miniaturization and fabrication. The 
sensitivity of the device is investigated thoroughly, since it is the most significant parameter 
for many sensor applications and has not been addressed previously. Four different 
geometric parameters are investigated and the results show that an optimal performance 
requires certain aspects of the design to be customized for specific applications. The 
length/width ratio α of the semiconductor layer is found to have an optimal value between 
10 and 20 for strong magnetic fields and 5 for weak ones. The placement of the voltage 
probes and current leads crucially influences the output sensitivity. In general, IVVI and 
VIIV devices are affected in a similar way. The two inner probes need to be placed as close 
as possible to the corners of the device in order to provide a high sensitivity. This leads to 
the surprising result that an EMR sensor with high sensitivity can be reduced to a two-
contact device with the two contacts located at the corners of the semiconductor layer. An 
asymmetric arrangement of the contacts does not yield an improved performance at high 
fields, but has a positive effect on the low field sensitivity. 

The simulations also show that the EMR effect and output sensitivity won’t drop until the 
contact resistivity between the semiconductor and metal exceeds 10-8 Ω·cm2. This result is 
consistent with experimental results reported previously. Interestingly, a device with 
contact resistivities up to 10-6 Ω·cm2 still could show a considerable large sensitivity which is 
95% of that in the device with contact resistivity of 10-8 Ω·cm2. Attempts to reduce the 
contact resistivity below this value will not yield any further improvement of the 
performance of the device, which is often governed by the sensitivity. This is an important 
finding since, in practice; a good ohmic contact with low resistivity requires a costly device 
fabrication with carefully controlled material growth and a rapid thermal annealing process 
after the deposition of the material. 
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1. Introduction 

Micro-Electromechanical System (MEMS) device has become a hallmark technology for the 
21st century. Its capability to sense, analyse, compute and control all within a single chip 
provide many new and powerful products. MEMS device is an emerging device in several 
areas of science and technology such as engineering structure, electronics and life sciences 
field such as chemistry, physic, biology and health sciences [Chollet and Liu (2007), 
Chivukula et al. (2006), Madou (1997)]. The two main key features for MEMS based device 
are mechanical structure that can be equated to motion and electrical signal. The addition of 
mechanical structure to an electronic chip gives a great enhancement to the functionality 
and performance. These devices have been dominantly used in the current market for 
computer storage system and automobiles [Madou (1997), Beeby et al. (2004), Hsu (2002)]. 
Smart vehicle are based on the extensive use of sensors and actuators. Various kind of 
sensors are used to detect the environment or road conditions and the actuators are used to 
execute any action are required to deals with conditions happen such as accelerometer for 
airbag system and Global positioning System (GPS) [Madou (1997), Hsu (2002)]. Most 
MEMS device are basically base on mechanical structure like cantilever beam, gears, pump 
and motor as shown in Fig. 1.  

2. MEMS and finite element analysis 

MEMS devices deal with nanofabrication process which related to microelectronics 
fabrication technology. This fabrication involves a series of high tech and high cost process 
such as ultraviolet lithography and doping. Due to expensive cost of fabrication, finite 
element analysis (FEA) has been used to characterize the MEMS structure behaviour during 
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DNA binding, through a water flow and vibration testing [Chollet and Liu (2007), 
Chivukula et al. (2006)]. FEA software helps MEMS designers to identify potential problem 
at early stage in design cycle before proceed on fabrication or production line, its help 
reducing working time to market. In design cycle, MEMS devices need to be check design 
intent, working operation, collision avoidance/detection and package stack-up. FEA 
capability scaling down from sub-micron to angstroms level features help designers come 
up with lower scale device design towards lead nano sensor/ actuator. Some MEMS base 
sensor devices is an assemblies of several parts and packaging, by using FEA, collision and 
contact surface can be determine [Hsu (2002), Liu (2006)]. 

 
Figure 1. Example of MEMS devices; (a) micropump, (b) micromotor, (c) microcantilever, (d) 
microgears [Madou (1997), Hsu (2002), Arik et al. (1999)] 

There are many FE software available in the market that has been used for analyse MEMS 
device like ANSYS, Solidworks, and Abaqus etc. Besides that there are also special 
dedicated MEMS FE software that integrates with MEMS device fabrication process such as 
CoventorWare, and IntelliCAD. In both software the modelling and fabrication file were 
combined and can transferred the fabrication machine [Madou (1997)]. The fabrication will 
be based on the attachment or design modelling file. This will not only help the MEMS 
designers to analyse and optimize the MEMS device design but also the manufacturability 
of the designed device. Flexibility in creating multiple design variations covering a wide 
range of needs such as die-mounted, package assemblies up to device efficiencies of 
configurations lead researchers to develop new device without any fabrication or prototype 
cost [Madou (1997), Hsu (2002), Liu (2006)].  

(b)

(c) (d)

(a)
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3. Cantilever MEMS based sensor and finite element analysis 

Brugger et al. (1999) and Thundat et al. (1995) have pointed out that cantilever based sensors 
are the simplest devices among MEMS devices that offer a very promising future for the 
development of novel physical, chemical and biological sensors. They have also been proven 
to be very versatile devices and have been used in several fields such as accelerometer, 
chemical sensors, etc [Vashist (2007)].  

Basically MEMS cantilever sensor relies on the mechanical deformation of the structure, or 
in other words the deflection of membrane or beam structure. When the cantilever is loaded, 
its stressed elements deform. The MEMS cantilever will bend. As this deformation occur, the 
structure changes shape, and points on the structure displace. The concept is that deflection 
occurs when a disturbance or loading is applied to the cantilever is free end or along the 
MEMS cantilever surface. Normally the disturbance or loading is a force or mass that is 
attached to the MEMS cantilever in which it will make the MEMS cantilever bending Fig. 2 
illustrates MEMS cantilever deflection working principal [Madou (1997), Hsu (2002), Lee et 
al. (2007)].  

 
Figure 2. MEMS Cantilever Sensor; (a) cantilever without binding mass, (b) cantilever deflects due to 
binding mass [Guillermo (2006)] 

As the MEMS cantilever deflects, the resulted deformation is termed bending. External 
applied loads which cause bending will result in reactions at the free end, consisting of 
displacement or deflection,���� as shown in Fig.3. Maximum deflection during force 
applied for a beam that has constant cross section can be calculated using equation (1) 
[Cheng (1998), Benham et al. (1996)]. Fig.3 shows the schematic of cantilever deflection 
where it has one fixed end and one free end with force/mass applied. 

 	���� 	 = 	��
�
����   (1) 

where δmax is the maximum deflection, F is force applied, l is the cantilever length, E is the 
Young’s Modulus for the cantilever material which in this research is silicon and I is the 
moment inertia for the cantilever.  

(a) (b) 
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Figure 3. Schematic of MEMS cantilever deflection. 

In the meanwhile, the cantilever will also sense stress that occurred during deflection. There 
are two type of stress occurred: tensile and compressive stress where tensile occurs at the 
top of cantilever and compression acts at the bottom of cantilever as illustrated in Fig.4. 
Since the piezoresistors are located at the top surface, research will be focuses at top surface 
of the cantilever.  

 
Figure 4. Stress occurred during force applied 

Maximum stress can be calculated using equation (2) for a constant cross section beam.  

   ���� = 	��� ����   (2)  

where M, moment = F, force x l, cantilever length, �max is the maximum stress, c is the height 
from the center axis to the top surface of the cantilever and I, moment  of inertia. 

3.1. Piezoresistive effect in silicon and MEMS cantilever relationship 

Piezoresistive effect describes the changing electrical resistance of a material due to applied 
mechanical stress. The effect causes a change in resistance value. This effect has been used 
for semiconductor based sensor such as germanium, silicon and polycrystalline silicon. 
Silicon offers remarkable piezoresistive effect and it has controllability for electronic circuits 
[Madou (1997), Streetman and Banerjee (2006)]. Semiconductor silicon is the most common 
material in the MEMS field. Naturally, the electrical and mechanical properties of silicon are 
of great interest which differs from conductor (e.g. metals) and insulator (e.g. rubbers). It 
has a conductivity which lies between a perfect insulator and a perfect conductor. Liu (2006) 
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states that the resistivity of semiconductor changes as a function of deformed mechanism. 
Therefore, silicon is a true piezoresistor. Liu (2006) also mentioned that piezoresistive effect 
refers to piezoresistor or resistor which changes during applied force or mass. The change in 
piezoresistance is linearly related to the applied stress and strain according to Bhatti et al. 
(2007) and Liu (2006). These related expressions are shown in equation (3) and (4) below 
[Chu et al. (2006)]:  

   ��� � 	��� � 	��� � 	���� � ���	 (3) 

 ��
� � �� ���   (4) 

where �� ��  is resistance change, �� and �� are the longitudinal and transverse stress 
components, π is the piezoresistive coefficient, G is gauge factor of piezoresistor (G=121, 
(Eklund and Shkel, 2007) , �� ��   is strain component. From equation (3) above, it shows that 
resistance change increases by maximizing the differential stress ��� � ���. 
Resistance change, �� ��  is often read using the Wheatstone bridge circuit configuration [Liu 
(2006)]. Wheatstone bridges consist of four resistors connected in a loop as shown in Fig. 5. 
An input voltage, Vin is applied across two junctions that are separated by two resistors. 
Voltage drop across the other two junctions forms the output [Hsu (2002), Boleystad (2003), 
Cook (1996)]. By locating the piezoresistive on the surface of a cantilever beam structure, a 
piezoresistive response can be correlated to the stress occurred as the MEMS cantilever 
deflect. Stress that occurs will be converted into voltage output, Vout.  

 
Figure 5. Wheatstone bridge circuit configuration; circuit consists of four piezoresistors in a loop [Cook 
(1996); Boylestad (2003); Chu et al.(2006)] 

3.2. Piezoresistive MEMS cantilever design 

In order to suit intended applications of MEMS cantilever, there are many available designs 
for MEMS cantilever. These designs vary in terms of the shape and parameter of the MEMS 
cantilever such as length, width, and thickness. In some published literatures, different 
designs at certain section of the MEMS cantilever are created where the shape is different 
from common MEMS cantilever design. Fig.6 shows the most common designs of 

Vout

Vin 
R1 R2

R4R3
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piezoresistive MEMS cantilever available from literature studies such as rectangular shape, 
paddle pad and v-shape.  

 
Figure 6. Type of shape for piezoresistive MEMS cantilever; (a) rectangle shape (b) paddle shape , (c) v-
shape [Loui et al. (2008), Su et al. (1996), Saya et al. (2005)] 

Additional designs or sections are proposed by some researchers to their fabricated device 
for the device protection according to the application purposes. Gel and Shimoyama (2004) 
have fabricated a protection head for their device to avoid the cantilever from easily being 
broken during handling as shown in Fig. 7(a). artificial hair cell (Fig. 7(b)) design are used 
for flow sensor as proposed by Fan et al. (2002).  

 
Figure 7. Additional design for MEMS cantilever; (a) protection head , (b) artificial hair cell [ Gel and 
Shimoyama (2004), Fan et al. (2002)] 

Table 1 summarizes MEMS cantilever designs shape, additional design, type of detection 
and also its applications. From the Table 1, it shows that a rectangular MEMS cantilever is a 
widely used for biosensor applications.  

In this research, paddle pad type MEMS cantilever is chosen. The pad area is used as an area 
where force or mass can be applied or binding of biological mass. For rectangular type, the 
area for force or mass applied is smaller and it is difficult for the force to be applied. For safe 
handling during fabrication of the piezoresistive MEMS cantilever, the proposed design will 
also include the protection head.  

(a)                                          (b)                                            (c)

(a) (b)

Protection 
Head 
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References Design/Shape 
Additional 

design 
Type of 

detection Applications 

Gel & Shimoyama 
(2004) 

Rectangular Protection head Piezoresistive Force sensing 

Loui et al. 
(2008) 

Square & 
trapezoidal 

- Piezoresistive 
Chemical 

sensor 

Park et al. (2007) Paddle type - Piezoresistive 
Acceleration 

sensor 
Peiner et al. 

(2008) 
Rectangular Tip Piezoresistive Force sensor 

Sone et al. 
(2004) 

v-type Triangle shape Piezoresistive Biosensor 

Yoo et al. 
(2007) 

Rectangular 
type 

- 
Piezoresistive 

and optical 
Biosensor 

Table 1. Summary of MEMS cantilever designs from literatures 

3.3. Increasing the sensitivity of piezoresistive MEMS cantilever 

There are several typical approaches to increase the sensitivity of piezoresistive MEMS 
cantilever as proposed in the published literature. The purpose of increasing the sensitivity 
for any MEM based device is to enhance the device capabilities to measure or detect small 
changes especially for biological mass detection which is to overcome low resolution of the 
read out system for piezoresistive detection method (Rosmazuin et al. (2008)).Table 2 
summarizes the typical available approaches in order to increase sensitivity of piezoresistive 
MEMS cantilever. It looks like decreasing or making small dimension is the most popular 
approach in order to increase the sensitivity of piezoresistive MEMS cantilever. However, 
this approach requires high precision lithography and the equipment is very expensive, for 
example Micro/Nano Lithography machine. The same argument applied if the change to 
low Young’s modulus material approach is taken. This approach needs deposition machine 
like LPCVD (low pressure chemical vapor deposition) or PECVD (plasma enhanced 
chemical vapor deposition) which is not available in many research labs. Another approach 
is by introducing stress concentration region (SCR).  
 

References Approach 

Chivukula et al. (2006); Li et al. (2007);  
Jiang et al. (2008); Brugger et al. (1999);  
Pramanik et al. (2006) 

Decrease geometry &  
use low doping level 

Calleja et al. (2005) 
Material changes  
(use low Young’s modulus) 

Yu et al. (2007); Bhatti et al. (2007);   
He and Li (2008) 

Introduce stress concentration region  
(SCR)  

Table 2. Summary of approaches taken to increase the sensitivity of MEMS cantilever 
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3.3.1. Stress concentration region (SCR) 

The main concept for this approach is to increase stress that occurred in the cantilever. SCR 
is an approach where defects or holes are made in order to increase stress. To produce SCR, 
no extra high tech equipment is needed because it just involves etching and mask design. 
So, this approach appears to be the most suitable for enhancing the sensitivity of 
piezoresistive MEMS cantilever since the piezoresistive material has good sensitivity to 
stress and no additional complicated equipment or process are required.  

Yu et al. (2007) introduced holes to the beam in their finite element analysis to study the 
effect of surface stress on the sensitivity of MEMS cantilever. The result shows that by 
introducing holes, the sensitivity of the piezoresistive MEMS cantilever can be increased. 
Fig.8 shows their result using ANSYS® where the maximum stress occurred near to the 
fixed end and at the last two SCR holes.  

 
Figure 8. Surface stress effects along longitudinal distance cantilever with holes [Yu et al.(2007)] 

Joshi et al. (2007) studied four types of SCR holes designs as shown in Fig.9 using 
Coventoreware2003. Long slit and staggered hole produced highest stress compared to 
other designs. It shows that more sharp corners can increase the stress occurred. This also 
agreed by He and Li (2006) which studied the surface stress effect on various types of SCR 
holes that are formed on the silicon cantilever using ANSYS®. Seven type of SCR holes 
shape have been analyzed such as rectangular, square, hexagonal, octagonal, circular and 
elliptical.  

Table 3 summarizes the analysis result of surface stress or average stress difference for 
different types of SCR holes. The result shows that as the number of sides for SCR holes 
increases, the surface stress increases. The octagonal type of SCR holes gives the highest 
stress as it has the highest number of sides that creates surface stress. 

He and Li (2006) also investigated the effect of adding more octagonal holes to the 
cantilever. Table 4 shows the surface stress occurred at SCR holes when different numbers 
of SCR holes of the same size are added along the length of the cantilever with the same 
spacing between the SCR holes. It shows that adding more SCR holes to the cantilever does 
not help to enhance the surface stress. Hence one octagonal SCR hole is enough to maximize 
the surface stress.  

Max StressMin Stress 
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Figure 9. Coventorware 2003 analysis, (a) six rectangular hole type, (b) long rectangular slit, (c) long slit 
and staggered holes, (d) Partially-etched SCR [Joshi et al. (2007)] 

 

Shape of SCR holes Maximum Stress (MPa) 
Cantilever without any hole 439

Rectangular 589
Square 563

Hexagonal 591
Octagonal 690
Circular 621
Elliptical 590

Table 3. Maximum stress for different shape of SCR holes [He and Li (2006)] 

 

No. of Holes Maximum Stress (MPa)
0 439.00
1 689.76
2 686.48
3 686.86
4 686.91

Table 4. Maximum stress when adding number of octagonal SCR holes [He and Li (2006)] 

Bhatti et al. (2007) also simulated piezoresistive MEMS cantilever with paddle pad with 
rectangular SCR holes by adding the number of SCR holes. Table 5 shows the summary of 

(a)                                           (b)                                         

(c)                                            (d)                

Max. Stress 
1200MPa 

Max. Stress 
1400MPa 

Max. Stress 
2300MPa 

Max. Stress 
1900MPa 
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the result on the effect of adding the number of rectangular SCR holes to the piezoresistive 
MEMS cantilever with paddle pad as shown in Fig.10. From the table, it shows that surface 
stress increases when one rectangular SCR holes is introduced. When adding more SCR 
holes to the cantilever, the surface stress does not change much. Compared with He and Li 
(2006), Bhatti et al. (2007) have the same surface stress behaviour when adding more SCR 
holes as shown in Fig.10. Both studies agreed that adding more SCR holes does not affect 
the surface stress; this happen because when a cantilever deflects, the bending moment is 
maximum at the fixed end. Hence the stress only shows significant increment at the first 
hole which is near to the fixed end because the sensitivity of piezoresistive MEMS cantilever 
cannot be further increased. In order to increase the sensitivity, one SCR hole is sufficient.  
 

No. of Holes Maximum Stress (MPa)
0 72.47
1 159.66
2 154.93
3 154.19
4 153.89

Table 5. Maximum stress with increasing the no. of SCR holes [Bhatti et al. (2007)] 

 
Figure 10. Cantilever stress distribution when adding SCR holes, (a) 1 hole, (b) 2 holes, (c) 3 holes, (d) 4 
holes [Bhatti et al. (2007)] 

(a)                                                             (b) 

     (c)                                                                (d) 
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In this research, all rectangular, hexagon, octagonal and decagonal types of SCR holes 
proposed by He and Li (2006) are selected for fabrication in order to increase the sensitivity 
and also to select which design is suitable with FEA and fabrication process. However the 
main problem of past literatures that used SCR method was most of the designs only did 
FEA simulation only and the study did not compared with the fabricated designs.  

3.4. Location of piezoresistors to form Wheatstone bridge circuit  

Conventionally, the piezoresistors are placed on the MEMS cantilever as close as possible to 
its clamped edge or fixed end. Fuller (2007) mentioned that the location of piezoresistor is 
best suited wherever the maximum stress occurs. Thus, the maximum stress that 
piezoresistors will sense is the maximum stress on the MEMS cantilever structure. 
Wheatstone bridge circuit configuration, there are two type of piezoresistors; the active type 
will be located at the high stress area whereas the passive type will be located at near zero 
stress area as illustrated in Fig.11 [Behren et al. (2003), Chu et al. (2007)]. The location of 
piezoresistor can be determined using FEA which will be discussed further in next section. 

 
Figure 11. Passive and active area for piezoresistors location [Chu et al. (2007)] 

3.5. Modelling and design of piezoresistive MEMS cantilever 

Paddle type rectangular cantilever is chosen for this research since it has large area for mass 
binding or to apply external load onto its paddle pad. The selection of SCR designs base on 
past literature, then simulate to determine the stress characteristics. From the FEA results, 
the SCR designs are fabricated and not all designs suit with the fabrication process. The 
polygon SCR tend to be circular shape due to low SCR dimension and etching process 
interaction that over-etch the side SCR shape.  
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Two paddle type piezoresistive MEMS cantilevers were modeled using computer aided 
design (CAD) software Solidwork®. Those types are: 

 Solid piezoresistive MEMS cantilever paddle pad model as shown in Fig.12a  
 Piezoresistive MEMS cantilever paddle pad with stress concentration region (SCR) 

model as shown in Fig.12b 

 
Figure 12. Piezoresistive MEMS cantilever model using Solidwork®;  

Fig.13 shows the detailed drawing of piezoresistive MEMS cantilever model that is analyzed 
using ANSYS®. The dimensions were taken from the successful model of piezoresistive 
MEMS cantilever that was fabricated in the cleanroom for this research. The red line 
represents path line location that has been used for detail stress distribution and deflection 
profile plot. 

 
Figure 13. Detailed drawing for piezoresistive MEMS cantilever with paddle pad model 
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3.6. Finite element analysis (FEA) using ANSYS®  

The piezoresistive MEMS cantilever model analysis is carried out by using ANSYS® version 
9.0. The analysis is carried out to investigate and understand the stress and deflection of the 
piezoresistive MEMS cantilever when external pressure or load is applied. First, the model 
files were imported from Solidworks® into ANSYS® software so that there will be no error 
during analysis. The model of interest must be prepared in a manner where the solver will 
understand.  

Then pre-processing is the second step and it is an important step when using ANSYS® 
prior to any solution execution. Some pre-processing procedures involved during analysis 
of piezoresistive MEMS cantilever models will be discussed here, including: 

 Element type 

The proper selection of element is important to ensure desired analysis is carried out. 
The chosen element must be an elastic element with constant performance and suitable 
with the computer performance. Several types of element have been tested in order to 
suit the piezoresistive MEMS cantilever models, with the result verification and also 
along with computer performance so that the analysis would be finely carried out. 
Behrens et al. (2003) mentioned that tetrahedral element SOLID187 fits best to the shape 
of structure fabricated by anisotropic etching. After some verification with the available 
cantilever models in the literature [Bahtti et al. (2007), Yu et al. (2007)], the SOLID187 
element was chosen as the element type.  

 Material properties 

For this analysis, material properties used throughout both models are called linear 
properties. Linear properties are chosen because the analysis with these properties 
requires only a single iteration and not temperature dependent. The material is also 
defined as isotropic which means the same mechanical properties are applied in all 
directions. Silicon material will be used during fabrication of piezoresistive MEMS 
cantilever. Therefore, silicon properties are applied for ANSYS® models. Table 6 lists 
the material properties of silicon used for piezoresistive MEMS cantilever models. 

 

Properties Value Reference
Young’s Modulus 150GPa Yu et al. (2007) 

Poison’s ratio 0.22 Yu et al. (2007) 
Density 2280 kg/m3 Yu et al. (2007) 

Table 6. Material properties used in ANSYS® 

 Meshing 

The piezoresistive MEMS cantilever models are meshed by free meshing. Arik et al. 
(1999) have study the meshing effect for fine and coarse mesh structure. The results 
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show that there is no major difference in both solutions. In this research, the analysis 
used coarse mesh in order to save time and to avoid crash during analysis. Table 7 lists 
the number of elements and node counted for both piezoresistive MEMS cantilever 
design. An element is a form of several nodes. For piezoresistive MEMS cantilever with 
SCR holes, number of nodes and elements are higher than solid cantilever because at 
the SCR holes the element  are more refine. Fig.14 illustrates free meshed for both 
piezoresistive MEMS cantilever models. 

Design No. of Nodes No. of Elements 
Solid Cantilever 9365 4212 

Cantilever with SCR hole 9813 4389 

Table 7. Number of elements and nodes 

 Boundary conditions 

Before solutions can be initiated, constraints or boundary conditions need to be 
imposed. Boundary conditions are a selected area or body that will be fixed with no 
displacement in any degree of freedom or any direction (DOF). When load is applied, 
the selected boundary condition area will remain constant which mean no deflection or 
movement occurred. In ANSYS®, boundary conditions or constraints are usually 
referred to as loads where the scope includes setting of boundary conditions 
(constraints, supports or boundary field specification) as well as other externally and 
internally applied loads. Most of these loads can be applied on the solid model 
(keypoints, lines, areas, and volume) or the finite element models (nodes and elements).  

 
Figure 14. Element plot after meshing for piezoresistive MEMS cantilever: (a) solid cantilever, (b) 
cantilever with SCR hole 

For this research, both models are constrained (zero DOF) in x, y, and z direction on the area 
as shown in Fig.15. Only the MEMS cantilever structure will reflect to the applied load. 

(a) (b)
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Figure 15. Selected area for boundary condition or constraint 

 Pressure applied and Contact area 

In order to make the piezoresistive MEMS cantilever deflect, external force or mass 
should be applied at the free end area. From the literature, the external force or mass 
value depends on the limitation of the cantilever itself which means the smaller the 
cantilever geometry the lower is the force or mass it can detect or be applied. For this 
research, force or mass applied represents biological mass that is commonly applied for 
biosensor/ cantilever application [Yu et al. (2007), Vashist (2007)]. The mass value is 
converted to pressure so that it can suit with ANSYS®. The pressure will be applied on 
the paddle pad area only which is at the free end. Mass from 0 up to 5gram has been 
chosen for this analysis.  

The conversion of pressure value is carried out using equation (5).  

   (5) 

where  is pressure, mg is force and A is the applied area. 

Table 8 lists the converted mass applied to pressure for ANSYS® analysis. 
 

Mass (g) Area (m2)  x10-5 Pressure (Pa) 
0 1.5 0 

0.2 1.5 130.67
0.4 1.5 261.33
0.6 1.5 392.67
0.8 1.5 523.33
1.0 1.5 654.00
1.5 1.5 981.33
2.0 1.5 1308.00
2.5 1.5 1635.33
3.0 1.5 1962.00
3.5 1.5 2289.33
4.0 1.5 2616.00
4.5 1.5 2943.00
5.0 1.5 3270.00

Table 8. Converted mass applied to pressure for ANSYS® analysis 



 
Finite Element Analysis – New Trends and Developments 240 

The pressure is applied on the area at the cantilever free end. Fig.16 illustrates the area 
where the pressure is applied on the piezoresistive MEMS cantilever models for ANSYS® 
analysis. 

 
Figure 16. Pressure applied area for ANSYS® analysis 

3.7. Wheatstone bridge circuit (piezoresistive circuit) analysis  

The Wheatstone bridge has been used extensively in the literature to determine the output 
voltage for piezoresistive MEMS cantilever. Cook (1996) mentioned that Wheatstone bridge 
is commonly used for gathering and measuring the electrical signal generated from gauges. 
It consists of four resistors connected together and one of the resistors will be acting like the 
strain gauge. Fig.17 shows the Wheatstone bridge configuration in schematic diagram. 

R1 is the active resistor and measuring gauge and the other three resistors are the passive 
resistors. Any variation in the current in the middle resistor will cause a change in output 
voltage from the circuit. In this research, software for circuit analysis named MultiSIM8® is 
used in order to study the circuit characteristic. Fig.17 shows the Wheatstone bridge circuit 
configuration using MultiSIM®. At ease, the circuit multimeter will show zero voltage as 
shown in Fig.17(a) and when the piezoresistive MEMS cantilever senses any stress at R1, the 
output voltage will change as shown in Fig.17(b). The resistance values are not fixed at any 
values. Hence any value can be taken as long as the measured output voltage is zero. 

 
Figure 17. Wheatstone bridge configuration using MultiSIM® 
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3.8. Summary of fabrication and testing  

In this research, two types of piezoresistive MEMS cantilever will be fabricated; solid design 
and 3mm SCR design piezoresistive MEMS cantilever. Fig.18 exemplifies the processes 
sequence schematically for piezoresistive MEMS cantilever fabrication.  

Successful fabricated piezoresistive MEMS cantilever is shown in Fig.19. In this figure, two 
types of piezoresistive MEMS cantilever; without SCR and with rectangular SCR design had 
been fabricated which basically has 9500µm length, 2000µm width (4000µm X 3500µm for 
paddle pad) and 100µm thick. Other than these two cantilevers, protecting heads have also 
been successfully fabricated for handling safety during fabrication processes and testing.  

 
Figure 18. Fabrication of piezoresistive MEMS cantilever 
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Further Current-Voltage test (I-V test) was used to characterize the fabricated piezoresistors 
for piezoresistive MEMS cantilever as illustrated in Fig.20. Each piezoresistor was tested by 
applying voltage from -10volt to 10volt across piezoresistor and the resulting current was 
measured.  

 
Figure 19. Successful fabricated solid and SCR piezoresistive MEMS cantilevers. 

 

 
Figure 20. I-V test setup: (a) test setup system, (b) Point probe setup and magnifying glass, (c) Point 
probe connected to piezoresistor 

4. Results and discussions  

Results from the methodologies given in the earlier section are presented and discussed 
accordingly.  
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 Analysis on piezoresistive MEMS cantilever without SCR 
 Selection of SCR designs for piezoresistive MEMS cantilever 
 Analysis on cantilever without SCR and cantilever with selected SCR design 
 Analysis on fraction change of piezoresistor using MultiSIM®   
 Analysis of fabricated piezoresistive MEMS cantilever 

4.1. Analysis on piezoresistive MEMS cantilever without SCR 

As mentioned in the previous section, the mass applied from 0 to 5gram is converted to 
pressure during FE analysis throughout this research. From the results of the analysis, it can 
be deduced that the stress increases with the increase of the mass applied in a linear fashion 
of the maximum stress when mass is applied compared with calculation were not more 10% 
different as shown in Fig.21(a). Stress contour obtained when 1g mass is applied on the 
paddle pad area of the piezoresistive MEMS cantilever without SCR is shown in Fig.21(b). 
Maximum stress occurs at the cantilever fixed end. It shows that the cantilever has high 
bending moment at the fixed end. 

 
Figure 21. Maximum stress for piezoresistive MEMS cantilever without SCR when varying mass is 
applied; (a) max. stress plot, (b) stress contour when 1gram mass applied 

Liu (2006) mentioned that the maximum stress associated with the individual cross sections 
changes linearly with respect to the distance to the free end. Stress occurs at the top and 
bottom surface then decrease when approaching to the middle of cantilever thickness. Fig.22 
illustrates stress distribution along the cantilever length when force/mass is applied at the 
free end. Fig.22 also illustrates stress distribution along the cantilever thickness when 
force/mass is applied at the free end. This verifies that maximum stress is high at the fixed 
end and it is this reason piezoresistors are commonly fabricated on the surface of the 
cantilever and near to the fixed end. 

Results from equation (1) and ANSYS® simulation were plotted in Fig.23. Both results show 
linear trend results where the increase of mass applied would increase the maximum 
deflection of solid piezoresistive MEMS cantilever.  
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Figure 22. Stress distributions along the cantilever thickness when force or mass applied [Liu (2006)].  

 

 
Figure 23. Maximum deflection plot with varying mass is applied. 

4.1.1. Stress distribution and deflection profile along a path line for piezoresistive MEMS 
cantilever without SCR  

When plotting stress along the selected path, a detailed stress and deflection analysis can be 
studied. Fig.24 shows the stress distribution along the path when a 1g mass is applied at the 
free end of the piezoresistive MEMS cantilever without SCR. It also shows the stress occurs 
throughout the path line where the maximum stress of 16.2MPa occurs at the fixed end as 
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shown in Fig.24(a). From the path plot the maximum stress occurs at the fixed end which is 
in good agreement with Liu (2006) in previous section. 

Fig.24(b) illustrates deflection plot along the path line for 1g mass applied. Combining the path 
stress and deflection plot, the piezoresistive MEMS cantilever starts to deflect at the location of 
maximum stress. From the path plot, the maximum deflection of 70.2µm occurs at the free end 
of the cantilever as shown in Fig.24(b). The same plot pattern has been obtained by Behrens et 
al. (2003) for their piezoresistive MEMS cantilever model along the longitudinal distance when 
a 20µN load is applied at the free end. In this research, MEMS cantilever deflection was not the 
main consideration because the piezoresistive method is highly depend on stress occurred. 
Hence the research is focused more to stress characterization.  

 
Figure 24. Stress through along the path line plot for piezoresistive MEMS cantilever without SCR 
when 1g mass applied.  

4.2. Analysis on rectangular, hexagonal and octagonal SCR designs of 
piezoresistive MEMS cantilever  

Three types of SCR designs have been choose from the past literature to study their stress 
characteristic when the mass is applied. Fig.25 shows the cantilever models with SCR 
designs dimensions.  

Fig.26 shows the comparison between MEMS cantilever without SCR and MEMS cantilevers 
with SCR designs when varying mass is applied. From the plot, all SCR designs successfully 
increase the stress occurred at the cantilever. As the number of sides increase, the stress 
occurred also increases except rectangular SCR since its length of 1000µm will remain 
constant. Rectangular SCR designs have the highest stress plot but between these two 
designs, rectangular SCR design is selected due to its suitability with photolithography and 
etching process.  

(a) (b)
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Figure 25. Piezoresistive MEMS cantilever with SCR designs: (a) rectangular, (b) hexagon, (c) octagonal 

 
Figure 26. Maximum stress for piezoresistive MEMS cantilever without SCR and with various SCR 
designs for varying mass applied 
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4.3. Analysis on piezoresistive MEMS cantilever with various rectangular SCR 
dimensions 

As mentioned earlier in the previous section, rectangular SCR design has been selected for 
detailed stress study where the length of rectangular SCR hole with constant width (400µm) 
is increased from 1000µm to 3000µm. All piezoresistive MEMS cantilever with rectangular 
SCR designs are compared with the MEMS cantilever without SCR in order to determine 
which rectangular SCR design will develop the highest stress. The selected design will be 
fabricated along with piezoresistive MEMS cantilever without SCR for characterization and 
functionality testing.  

Fig.27 show the stress distribution plot along the path line is plotted for piezoresistive 
MEMS cantilever without SCR and all piezoresistive MEMS cantilever with rectangular 
designs when 1g mass applied. All piezoresistive MEMS cantilever with rectangular SCR 
has higher stress at the fixed end compared to piezoresistive MEMS cantilever without SCR. 
The stress occurred also increase along the length of rectangular SCR as the length increase. 
This shows that by increasing the length of rectangular SCR, the stress along the cantilever 
is also increased. It shows that piezoresistive MEMS cantilever with rectangular SCR A3 is 
the most suitable to fabricate since the increase in stress is more compared to rectangular 
SCR A1design and rectangular SCR A2 design.  

 
Figure 27. Stress along the path line plot for piezoresistive MEMS cantilever without SCR and 
piezoresistive MEMS cantilever with rectangular SCR designs when 1g mass applied. 
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Hence, the piezoresistive MEMS cantilever with rectangular SCR A3 design and 
piezoresistive MEMS cantilever without SCR will be used for Wheatstone bridge circuit 
analysis using MultiSIM®. Both piezoresistive MEMS cantilever designs will also be 
fabricated and tested 

4.4 .Analysis on output voltage of piezoresistors using MultiSIMS® 

Data from FEA were used for the piezoresistor circuit testing using MultiSIM® software. 
Fig.28 shows the graph of output voltage when mass is applied at the free end. The output 
voltage increases with the increase of mass applied. The piezoresistive MEMS cantilever 
without SCR seems to be less sensitive than the piezoresistive MEMS cantilever with 
rectangular SCR A3. This shows that by introducing rectangular SCR A3 to the 
piezoresistive MEMS cantilever can increase the sensitivity compared to the piezoresistive 
MEMS cantilever without SCR. Chu et al. (2007) also obtained a linear relationship for the 
output voltage versus applied force. Results shows that by introducing rectangular SCR A3 
to the piezoresistive MEMS cantilever, the sensitivity is enhanced by almost about 2 times.  

 
Figure 28. Output voltages when varying mass applied 
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mass is applied for the fabricated piezoresistive MEMS cantilever without SCR and with 
rectangular SCR A3 design. Results show that both cantilever have polynomial relation, 
hence trend line is added for both curve fitting. From the R2 values, both were near to 1 
which mean the trend line almost balance through all plotted data. The output voltage not 
linear due to environment effect since the fabricated Wheatstone bridge circuit is sensitive to 
any changes in temperature. Chu et al. (2007) obtained linear relationship for output voltage 
versus applied force. From plotted results, the average sensitivity for piezoresistive MEMS 
cantilever with rectangular SCR A3 was 0.063mVg-1 and 0.032mVg-1 for the piezoresistive 
MEMS cantilever without SCR. When comparing both values, the piezoresistive MEMS 
cantilever with rectangular SCR A3 has successfully enhanced the sensitivity by 1.97 times 
from the piezoresistive MEMS cantilever without SCR. 

Comparing the sensitivity value determined from MultiSIM® analysis, 2 times and 
fabricated device, 1.97 times, both results show that by introducing rectangular SCR A3 to 
the piezoresistive MEMS cantilever the sensitivity has successfully enhanced. The difference 
between both sensitivity is 1.5%. The different results obtained for both fabricated 
piezoresistive MEMS cantilever are due to uncontrollable fabrication processes such as 
etching rate, doping concentration, photolithography effect and the difference in the value 
of Young’s Modulus etc. Besides that, environmental conditions like cleanroom temperature 
and vibration disturbance are also among enforcing effect because low dimension sensor 
has high sensitivity with the surrounding. 

 
Figure 29. Output voltage when varying mass applied for piezoresistive MEMS cantilever without SCR 
and with rectangular SCR A3. 

5. Conclusions  

The piezoresistive MEMS cantilever has been design, analysed and fabricated in this research. 
FEA analysis results show that rectangular SCR design has the highest stress developed 
during force applied compared to other designs. The piezoresistive MEMS cantilever with 
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rectangular SCR and without SCR were fabricated and characterised. Results show that the 
fabricated piezoresistive MEMS cantilever has successfully enhanced the sensitivity by 1.97 
times compared to fabricated piezoresistive MEMS cantilever without SCR. The difference 
between FEA sensitivity analysis value and the fabricated device sensitivity value is 1.5%.  
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1. Introduction
The astronomical instrumentation needs high level of image quality and stability. The quality
of images processed by an optical instrument can be referred to the size of the spot and/or
the point spread function (p.s.f.), while the stability is related to the displacement of the spot
centroid during the observations.

The opto-mechanical elements are designed and manufactured in order to have enough
stiffness to minimize shape deformations and flexures due to thermo-gravitational loads. Old
traditional design philosophy answered to the problem with high thicknesses and related
high masses. Heavier glasses means heavier supports and high gravitational dependent
misalignment. The technological research is nowadys devoted to the light weighing of
opto-mechanical systems either keeping enough stiffness, or actively correcting optical
surfaces and/or positions. Complementary to the technological research, the development
of powerful numerical tools added to an huge enlargement of CPU computing capacity have
been offered a significant improvement into the engineering design enhancing the complexity
and efficiency of the design phase.

Optical lens design refers to the calculation of lens construction parameters (variables) that
will meet a set of performance requirements and constraints, including cost and schedule
limitations. Construction parameters include surface profile types (spherical, aspheric,
holographic, diffractive, etc.), and the parameters for each surface type such as radius of
curvature, distance to the next surface, glass type and optionally tilt and decenter. The optical
design exploits numerical raytracing techniques to maximize the design efficiency. Ray tracing
is a method for calculating the path of waves or particles through a system with regions of
varying propagation velocity, absorption characteristics, and reflecting surfaces. Under these
circumstances, wavefronts may bend, change direction, or reflect off surfaces, complicating
analysis. Ray tracing solves the problem by repeatedly advancing idealized narrow beams
called rays through the medium by discrete amounts. Simple problems can be analyzed by

©2012 Riva, licensee InTech. This is an open access chapter distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.

Chapter 12



2 Will-be-set-by-IN-TECH

propagating a few rays using simple mathematics. More detailed analyses can be performed
by using a computer to propagate many rays.

On the other hand, structural design is nowadays mainly based onto The finite element
method (FEM). It is a numerical technique for finding approximate solutions of partial
differential equations (PDE) as well as of integral equations. The solution approach is
based either on eliminating the differential equation completely (steady state problems), or
rendering the PDE into an approximating system of ordinary differential equations, which are
then numerically integrated using standard techniques such as Euler’s method, Runge-Kutta,
etc.

The optimization procedure refers to choosing the best element from some set of available
alternatives. In the simplest case, this means solving problems in which one seeks to minimize
or maximize a real function by systematically choosing the values of real or integer variables
from within an allowed set. This formulation, using a scalar, real-valued objective function,
is probably the simplest example; the generalization of optimization theory and techniques to
other formulations comprises a large area of applied mathematics. More generally, it means
finding “best available” values of some objective function given a defined domain, including
a variety of different types of objective functions and different types of domains.

In this chapter we present a possible simplified application of the optimization theory
to opto-mechanical design that has been integrated into a multipurpose combined
opto-mechanical numerical design process. In particular we will show a single variable
optimization routine oriented to minimize mass while keeping the optical displacement below
a certain value [12]. In addition considering the general purpose of this book will be briefly
shown the modeling techniques used in some application to simulate the performances of
functional materials like SHape Memory Alloys and Piezoelectrics. This techniques has been
implemented in the optimization algorithm to maximize the efficiency of this devices in the
actuation of active Mirrors based onto composite materials.

2. Framework
The integrated design procedure proposed exploits the huge power of numerical computation
for the design of instrumentations for astronomy. The framework can be ideally seen
as “server to client” communication, where a managing server code feeds input data to
computing clients and extracts the desired results. The adopted software are:

• Matlab® is the server software: it adapts the inputs for the client codes and evaluates their
outputs.

• MSC-Nastran® is the FEA client code: it receives from the server code proper models and
computes mechanical results (thermo-gravitational displacements, eigen-frequencies, ...)

• ABAQUS® is a FEA client code used alternatively to MSC-Nastran® in case of user
defined contitutive laws.

• Zemax® is the Raytracing client code: it receives the optical perturbations properly
adapted and evaluates the optical performance of the system (image quality, image
stability, ...).

The procedure obtains image quality and motion of an opto-mechanical system under
thermal and/or gravitational loads. A simplified mesh (1d or 2d elements) of a possible
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opto-mechanical configuration is prepared starting from the optical design. Then Matlab®
implement physical properties into the input file and feeds the MSC-Nastran® solver. The
displacements are extrapolated and reorganized in order to be compliant with the Zemax®
reference systems. Matlab® runs the Zemax® solver and extract the desired data (Spot
radius, EE80, p.s.f., ...). In this way a first order estimation of the Instruments mechanical
stability is obtained and can be easily implemented an optimization process based onto the
smart modification of the physical and mechanical properties depending onto the Zemax®
results.

Easy modifications can be introduced to improve the accuracy of the algorithm’s results. A
“qr” based Zernike fitting function has been implemented in order to allow the modeling of
optical surface deformations introducing surface errors into the Zemax optical layout. This
configuration can be used both for overall system analysis and for detailed object analysis like
active optical element performances evaluation[11, 13].

Figure 1. Numerical Framework

2.1. FEA

2.1.1. Mesh generator

The opto-mechanical Finite Element modeling starts from the optical model. Masses, Center
of Gravity and Optical Centers of each element are extracted from the optical file. A simplified
Matlab® discretization function can be used when the instrument is very simple (i.e. two or
three elements); in case of complex geometries the preliminary mesh can be prepared through
dedicated software (Femap® , Hypermesh® , ...); this raw discretization usually models a
bench or a box that profiles the optical systems through 2D elements. Due to the high
interaction level required we decide to omit the automation of the whole bench meshing.

The opto-mechanical elements are then modeled through semi-rgid elements and
concentrated masses. The weight of opto-mechanical subsystem is simplified considering
double the optical element mass to include the contribution of mechanical mountings. The
semi-rigid element (80%) is used instead of the rigid one in order to simulate the finite stiffness
of the mountings; the master node is the optical vertex and the slave are the system’s CoG and
the connection points. Depending onto the geometry and the interface of the instruments,
sometimes it is necessary to introduce some reinforcement beams or support trusses that can
be easily modeled through 1d beam elements. In some cases, in particular with large optics or
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active optical systems, it is important to model the whole optical surface through 2D elements
connected to the main bench via 1D beams.

Matlab® can read the model mesh and writes the input file for the Finite Element processor
modifing both the geometry and the properties (thickness of 2D and section of 1D elements) if
needed. This feature is the crucial point that helps the designer to optimize the performances
of the system.

Different codes can be used for different application. The interaction with ABAQUS[1] is
necessary for smart structures applications thanks to the higher performances of the code
in presence of user defined constitutive laws. The routines interacts with NASTRAN[6] for
opto-mechanical performances prediction and optimization.

2.1.2. Fast extrapolation algorithm

To evaluate the whole performances of an instrument is necessary to verify the performances
within all the loading conditions. In particular it should be possible to find situations where
the errors tends to auto-compensate or, on the other hand, are magnified by the interaction
with other perturbations.

Here is presented a simple extraction algorithm that can be used to reduce the number of FEA
analysis required. The basic idea is to perform less analyses as possible and extracts all the
displacement fields in an analytical way. Doing this, one can also predict the displacements in
every condition of the gravitational load with or without the thermal expansion.

Figure 2. Reference systems

If the g vector rotates in the whole 3D space the analytical definition of the displacements is
more complex. First of all it is necessary to define how decompose the gvector in the three
directions x, y and z. We have decided to use that shown in Figure 2. In this way we can
simulate the real rotations of the telescope, the α angle is the declination and β angle represents
the rotation of the telescope around the optical axis. Doing this, the components of the g-vector
are: ⎧⎪⎨

⎪⎩

gx = g · sin(α) · cos(β)

gy = g · sin(α) · sin(β)

gz = g · cos(α)
(1)

The equation that ties force and displacements can be written as:

D = K−1 · F (2)
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Where D is the displacements vector, K the stiffness matrix, and F is the loads vector. If we
combine Equations 1 ans 2, through some algebraical operations, we obtain the general form:

D = A1 · sin(α) · sin(β + φ) + A2 · cos(α) (3)

Where A1 is the vector of the maximum amplitudes of the displacements when the g vector is
in the xy plane, A2 is the vector of the maximum amplitudes of the displacements when the
g vector is orthogonal at the xy plane, α and β are the angles of equation 1 and φ is a phase
vector of the sinusoids. In order to have the whole displacement we need three known points
to determinate the three unknown variables: the amplitudes and the phase.

Equation 2 can be further detailed introducing the thermal loads simply by adding the C · T
term, where C C is a vector constant which ties the temperature T at the displacement D. If
we consider Td as the the vector of the displacements due to the thermal loads, Equation 3
becomes:

D = A1 · sin(α) · sin(β + φ) + A2 · cos(α) + Td (4)

Now with only four known points (for four unknown variables: the two amplitudes, the phase
and the thermal displacement) we can have the overall displacements and the possibility to
decompose the thermal contribution.

In addition we should note that Equation 4 can be simplified if the known points are wisely
taken. In fact if the sampling loading condition are:

1. α = 90, β = 0, δT = 0: gravity vector along X axis, no thermal load.

2. α = 90, β = 90, δT = 0: gravity vector along Y axis, no thermal load.

3. α = 0, β = 0, δT = 0: gravity vector along Z axis, no thermal load.

4. g = 0, δT �= 0: only thermal load.

The algebraic simplification of Equations 1 and 2

D = X · sin(α) · cos(β) + X · sin(α) · sin(β) + Z · cos(α) + Td (5)

2.1.3. Zernike fitting

The surface Deformations are processed through a Zernike Fitting algorithm. In precision
optical manufacturing, Zernike polynomials are used to characterize higher-order errors
observed in interferometric analysis, in order to achieve desired system performance. They are
commonly used in active and adaptive optics where they can be used to describe wavefront
aberrations.

The most general way to express the Zernike polynomials is in the form:

Rm
n (ρ)e

imθ =

{
Rm

n (ρ)cosmθ

Rm
n (ρ)sinmθ

(6)

Where the n index defines the order of the radial power so an n value of 5 would indicate all
polynomials whose maximum radial power is ρ5. Only certain values for m are allowed once
n is chosen; n + m must be even, and 0 ≤ m ≤ n. The surface error is defined as[2]:
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Figure 3. Zernike polynomial basis

E = Σ(δi − Di)
2 (7)

where i is the node number, δi is FE displacement of ith node, Di is the polynomial
displacement of the ith node. The series of D can be symbolically written as Di = Σcj fij where
cj are the coefficients of the polynomial. The best fit coefficients can be found minimizing the
error E respect to cj:

dE
dcj

= 2Σ(δi − Σcj fij) fij = 0 (8)

This system is then solved finding the best fitting coefficients through an
orthogonal-triangular decomposition (Matlab® qr function). The first 28 coefficients of
the Zernike Polynomial have been taken into account in this application.

2.2. Raytracing

2.2.1. Zemax® and Matlab® data exchange

The raytrancing software Zemax® is used to evaluate the optical performances. Zemax® has
a very powerful feature which allows another software to establish a communication link to
extract lens data. The idea is based onto a program that use Zemax® like a remote application
to trace rays through the lenses, and then extracts the data to be sent to other programs for
further analysis or computation[17].

The communication between the application and Zemax® is accomplished using Dynamic
Data Exchange (DDE). DDE is a protocol defined within the Windows operating system for
sharing data between programs. Two programs can establish a DDE link, with one program
acting as the “server” and the other the “client”. The client generally requests specific data
from the server, and the server sends the data back to the client.

Two main function must be used when exchanging data with Zemax that are the link opening
and closing. To establish a DDE link with Zemax® , the client program must broadcast a
message to all top level windows that includes a reference to the application name, and the
topic name. The topic name indicates to Zemax® what data is being requested.
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Zemax® supports a number of capabilities under DDE. Each function/item is given a name,
that is passed to the Zemax® server using the proper request protocol. Zemax® responds to
each item request with requested data. Most of them are passed from Zemax® back to the
application (Matlab® ) in a string that must be properly managed.

2.2.2. Zemax® computations

In the case of thermal and gravitational performances evaluation, it is necessary an adaptation
of the optical model. Coordinate Breaks (CB) are introduced before and after each Optical
element paying attention to the transformation sequence. This is crucial to realize a feature
that allow the introduction of local optical displacements without modifying the remaining
optical layout. Matlab® extracts optical displacements from Nastran (global coordinate
system), optical coordinate systems from Zemax® and applies the proper transformation
matrices to obtain optical displacements in Zemax® local reference systems. In case of surface
deformations, the surfaces of Zemax® file are modified from “Standard” to “Zernike Fringe
Sag” in order to allow Matlab® to updates the extra data tables with the Zernike coefficients
obtained from the fitting algorithm.

After the uploading of mechanical data into the optical file, Zemax® evaluate spot and
p.s.f. information through its raytracing engine. If necessary Matlab® request a focusing
optimization after having stored the focal plane distance to evaluate the relative focal
variation. Finally Matlab® extract from Zemax Spot dimensions (Max and R.M.S. radius) and
centroid displacement, eventually of multiple fields.

The results defines respectively the image quality and stability of the overall optical layout
and, if necessary can be passed to an optimization algorithm that manage the mechanical
properties of the system.

2.3. Optimization

Whereas optimization methods are nearly as old as calculus, numerical optimization reached
prominence in the digital age. Its systematic application to structural design dates to its
advocacy by Schmit in 1960. The success of structural optimization in the 1970s motivated
the emergence of multidisciplinary design optimization (MDO) in the 1980s. Here will be
presented a simplified single variable optimization approach that has been used as starting
point[14].

2.3.1. Problem statement

The general optimization problem (for example minimization) wants to minimize the
objective function:

F(X) (9)

subjected to inequality constraints:

pj(X) ≤ 0 j = 1 : m (10)
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and equality constraints:
hk(X) ≤ 0 k = 1 : l (11)

and side constraints (if applicable):

Xl
i ≤ Xi ≤ Xu

i i = 1 : n (12)

where vector X is the n dimension design variable vector.

In opto-mechanical variable design X may consists into the instrument properties (shell
thickness, beam diameter, ...) while F(X) is the overall instrument Mass function dependent
to design variables. The inequality constraint p(X) ≤ 0 is the optical displacement that must
be kept within certain specifications.

2.3.2. Iterative procedure

The optimization algorithm requires an initial set of variables X0. In the opto-mechanical
optimization we consider as staring point the preliminary mesh defined by the user based
onto its own experience. The whole integrated analysis is carried out as shown in this chapter
extracting from MSC-Nastran® the overall system mass and from Zemax® the first optical
displacement set. A small perturbation is applied onto the design variable (X1 = X0 + δX)
and the procedure evaluates a second set of Mass and optical displacements. After the
initialization the gradient of Mass and Optical displacement functions are evaluate respect
to the design variable and the automatic procedure is started.

The optimization routine is launched:

1. Evaluate Mass function gradient as ∇M(Xi−1) = (M(Xi−1)− M(Xi−2))/(Xi−1 − Xi−2);
2. Update the design variable: Xi = Xi−1 − gM∇M(Xi−1) where gM is a gain factor properly

set in order to manage iteration number;
3. Evaluate Mass and optical displacement with new variables and update step counter;
4. Is optical displacement below specification? Yes: go to point 5; No: go to point 6
5. Is M(Xi) − M(Xi−1) ≤ Toll (where Toll is a reference value) i.e. the minimization

converging? Yes: optimization ended; No: go to point 1
6. Evaluate Displacement function gradient as ∇D(Xi−1) = (D(Xi−1)− D(Xi−2))/(Xi−1 −

Xi−2);
7. Update the design variable: Xi = Xi−1 − gD∇D(Xi−1) where gD is a gain factor properly

set in order to manage iteration and go to point 3

3. Modeling techniques
In the attitude of this book, following will be presented the modeling technique developed
for the build up of the Finite Element Models of the Smart Structures. In particular the
techniques adopted for the modeling of PiezoComposites and Shape Memory Alloy will
be briefly introduced. It will not be described here the phsyical behaviour of the materials,
detialed description of the full work and approach can be found in [11] and in [13].
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3.1. Shape memory alloy Finite Element modeling: the Turner micro-mechanical
approach

To perform Finite Element analysis regarding SMA is necessary to define the proper
constitutive law that describe the material behavior. In this paper will be presented the FE
implementation of three different constitutive law. A further detailed description of the laws
and their application can be found in the references [7].

In physics, a constitutive equation is a relation between two physical quantities (often
described by tensors) that is specific to a material or substance, and approximates the response
of that material to external forces. It is combined with other equations governing physical laws
to solve physical problems, like the flow of a fluid in a pipe, or the response of a crystal to an
electric field.

During the last ten years researchers have been developed several constitutive laws that
can be classified considering the different approaches used in their formulation such as:
micro-mechanical or macro-mechanical and phenomenological or thermodynamic.

The micro-mechanical formulation essentially takes into account the properties of single
crystals of the material averaging their behavior over a Representative Volume Element
(EVE). Micro-mechanical models have been developed using a thermodynamic approach
and evaluating the energy involved during a phase transformation. These models also use
homogenization techniques to derive the overall behavior of the SMA.

The real benefit of this class of model lies in their ability to predict the real response of the
material starting from the lattice parameters for crystalline and crystal and grain level data
derived from martensitic transformation. Nevertheless these models are very complex and
require a large number of computational operations.

The Turner model has been successfully implemented into the commercial code ABAQUS®
[10]. This model defines temperature dependent Young modulus and Thermal expansion
coefficient. Exploiting some peculiar properties of the software it is possible to define a look
up table mapping the variation of material characteristics. As obtained from the calibration of
the model (Figures 4 and 5), it has been used the definition of Young modulus and Thermal
Expansion coefficient as a function of temperature.

Figure 4. SMA E(T)

Different verification models were performed to select the type of the elements [10]. The
comparison underlines how a shell model is precise enough with a high gain in terms of CPU
time. Due to this consideration, the final comparison was conducted on a shell-based model
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Figure 5. SMA α(T)

Figure 6. Turner Finite Element model

Figure 7. Displacement Turner correlation results

with composite laminate properties. The NiTiNOL actuators were modeled thickening the
mesh and considering the material as a “ply” of the lamination sequence. The thermoelastic
model receives as input the thermal load on the wires and derives the temperature behavior
of all the nodes (Figure 6).

A carbon fiber-reinforced panel with six embedded NiTiNOL wires was modeled and
analyzed using the ABAQUS commercial code. The actual panel was manufactured with
12 plies [90/(0)2/90/ + 45/ − 45]s and its overall dimensions were: 30 x 170 x 1.2 mm. The
actuators chosen were OWSME wires (φ = 0.38mm) trained using standard heat treatments.
They were embedded between the 2nd and the and 3rd plies with a 4% imposed strain. The
manufacturing technolgoy is reported in [3, 10]. The panel was constrained on one side
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and activated via Joule effect. The numerical/experimental comparison shows that, after a
short transition, the predicted displacement matches (max. error 20 μm) the experimental one
(Figure 7).

3.2. Piezoelectric numerical modeling:“Structural-scale” modeling technique for
MFC

Following will be presented the numerical technique adopted to model The Macro Fiber
Composites (MFC) that have been developed by NASA Langley Research Center (LARC) in
2000 [16]. The components of the MFC are illustrated in Figure 9. The core is made by aligned
piezoceramic fiber included in epoxy resin and joined between two groups of interdigited
electrodes (IDE) supported by a Kapton film. The MFC have an overall thickness of 0.3mm
and the dimensions of the region in which are placed PZT fibers called the active area, can
vary from an area of 28× 14mm2 to 85× 28mm2. The spacing of IDE is 0.5mm, while the fibers
have a width of 350μm and a volume fraction above 85%.

Figure 8. MFC actuator

Figure 9. MFC layers

The set up of numerical procedure for the performance prediction as the selection of the best
technology to couple the structure to the actuators are fundamental to design efficient smart
structures. The numerical approach for the design of piezo based smart structures is dealt in
this section . The design of smart structure is mainly oriented to the study of authority and
then to the stress analysis. With the intent of reducing the design time, a technique able to
predict the overall performances of the structure through “light-weight” numerical models
was developed.

The overall smart structure can be conceptually divided into two sub-system: the structure
itself consisting into the composite panel and the MFC actuators. The proposed technique
is developed under the ABAQUS® commercial code [4] environment1 and neglect the
detailed analysis of stress state adopting essentially two type of elements: S4R four-node
shell elements for the host material and C3D20RE twenty-node quadratic bricks (reduced

1 And can be obviously ported to other Finite Element Codes
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integration2) for the actuator. The two subsystems are modeled as separated mesh connected
together through the *TIE algorithm which introduce a link between the nodes of the two
different surfaces evaluating the distances between the two faces and obtaining an adhesion
factor to be applied at each node (Figure 10).

Figure 10. Sketch of the proposed structural scale technique.

Figure 11. Layout for the structural scale validation.

A simple laminate (Figure 11) 200 × 40mm made by three layers, with the piezo in the
middle, has been considered to validate the proposed technique. A d.d.p. of 100V between
the electrodes has been simulated and the transversal motion of the tip has been evaluated
through the Classic Lamination Theory (CLT) [4]. Since the laminate is formed by three plates
the TIE algorithm is used twice. Due to the fact that Piezo element are quadratic, while shell
ones are linear different mesh densities must be adopted as shown in Figure 12

Figure 12. Different mesh densities

It is important to pay attention to the constraint conditions, because those nodes are also
influenced by the TIE algorithm which connect elements with six degrees of freedom (d.o.f.)
per nodes to other with three d.o.f. per nodes. If compared with the CLT, the results coming
from those analyses, strongly encourages the use of these techniques in fact the tip deflection
error obtained is less then 1e − 3%.

The proposed technique can be also adopted for the modeling of smart structures with
MFC actuators. For an overall performance evaluation is not necessary to model the whole

2 the reduced integration is necessary to reduce the so called shear-locking numerical induced effect
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Figure 13. Finite Element results of the test specimen

detailed MFC as a sequence of different layers and subcomponents. A previous comparison
[4] between detailed models3 confirm in fact, that the displacements resulting from the
light-weighted technique are exceptionally close to the detailed ones.

The MFC have then been modeled through an homogeneous equivalent piezoelectric plates
MFCEQ with the same effective coefficients derived from the data-sheets. The dimensions that
have been taken into account are the ones of the active area, while the electrodes have been
modeled as a voltage equivalent activation4.

Figure 14. MFCEQ into its MFC counterpart

The MFCEQ has been then used for the modeling of simple smart panels with bonded or
embedded actuators. The simply bonding of the piezo device onto a panel is simulated
through the TIE algorithm and have been compared with the detailed one obtaining limited
errors (1e − 2%).

4. Applications

4.1. Shape memory actuated deformable mirrors

This procedure has been used to evaluate optical performances deformable mirrors[7–9] based
onto new technologies known as smart structures. Carbon fiber reinforced Mirrors actuated
by Shape Memory Alloy wires have been modeled to verify their optical capabilities. Image

3 The whole substructure was modeled in detail with 0.2mm mesh pitch
4 the electric field between two digit times the number of digit gives the overall electric field and tension.
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quality during refocusing oriented activation has been evaluated. Several runs of this code
has been performed, varying the number/position of actuators and the structure lamination
sequence in order to have the evaluation of the influence of each ingredient onto the efficiency
of the overall system. In this particular application the routine interact with ABAQUS® that
is a finite element solver more reliable with user defined Constitutive laws. The aim of the
analysis was the evaluation of the authority of the actuators into the variation of the curvature
radius of the shell keeping the image quality within acceptable limits.

Figure 15. Undeformed SMA actuated Deformable mirror

Figure 16. Deformed SMA actuated Deformable mirror

In Figure 17 is shown the overall activation sequence: the first part of the process is dominated
by a contraction of the deformable mirror due to the mismatching of the CTE of NiTiNOL
respect to CFRP; when the temperature raise up to the AS the phase transition starts and the
actuators imposes the recovery strain deploying the deformable mirror. The image quality
has been evaluated both in terms of focusing spot (Figures 19 and 21) and p.s.f. (Figures 18
and 20)

Several analyses have been performed to evaluare the focusing capabilities respect to the
number of actuators and the stiffness of the substrate (i.e. number of composite plies). For
the detail and the results of this analyses that are not purpose of this chapter we refer to [8].
As an example here we show how the actuators density modify the efficiency of the smart
SMA actuated structure. Thus why thw he comparison between two different configurations
that offer similar variations of focal positions is shown. In Figure 22 is displayed the overall
focusing variation comparing a 48 plies substrate with 14 actuators (blue) and a 36 plies with
8 actuators (green). This behavior has been crosschecked with the RMS and max spot size
variation (respectively Figures 23 and 24).
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Figure 17. Example of variation of focus position during the activation of a SMA deformable mirror.

Figure 18. Starting p.s.f.

Figure 19. Starting focused spot

Figure 20. Example of Deformed p.s.f.
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Figure 21. Example Deformed focused spot

Figure 22. Focal position variation with similar focusing range

Figure 23. RMS spot radius with similar focusing range

4.2. MFC actuated deformable mirrors

The same approach (paragraph 4.1) has been used to evaluate Carbon fiber reinforced Mirrors
actuated by Piezoelectric MFC actuators.

Analyses have been conducted based on the correlation data obtained by the validation of
simplified modeling technique presented in Paragraph 3.2. In particular the surface quality
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Figure 24. MAx spot radius with similar focusing range

Figure 25. Undeformed Piezo actuated Deformable mirror

Figure 26. Deformed Piezo actuated Deformable mirror

and the curvature radius variation have been verified as functions of the number of actuators,
the different configurations and the lamination sequence.

It has been considered the smallest type of actuator even if the analysis framework set up
allow the implementation of several type and dimension of them, simply due to the fact that
they were already available in the laboratory,

Considering this class of actuators the performances are not satisfactory when the MFC
are placed onto a single concentric ring. In Figures 27, 28 and 29 the results obtained
with a population of 15 actuators evaluated as a technological limit are plotted; the radial
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coordinates have been parametrically obtained searching for the best performances that have
been obtained placing the actuators at 0.53% of the mirror radius. With this layout the spot
size goes out of boundary limit with low radius variations (0.37mm) while the max spot radius
is always unacceptable.

Figure 27. Focal position variation with 10 actuators along one ring (60 plies)

Figure 28. RMS spot radius with 10 actuators along one ring (60 plies)

Figure 29. Max spot radius with 10 actuators along one ring (60 plies)

The performance of the piezo actuated smart deformable mirror are more interesting if we
consider two ring of actuators, with the same angular coordinates (Figure 25). In Figure 26
is shown the contour of deformation. The results obtained comparing configurations with
respectively 8 and 10 batteries of actuators (Figures 30, 31 and 32) shows the more interesting
performances, both in terms of higher radius variation and in terms of better image quality
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processed, with the higher number of actuator that are then limited only by technological
aspects, mainly related to the crowding of the surface.

Figure 30. Focal position variation with 10 and 8 actuators per ring (two ring 60 plies)

Figure 31. RMS spot radius with 10 and 8 actuators per ring (two ring 60 plies)

Figure 32. Max spot radius with 10 and 8 actuators per ring (two ring 60 plies

Also in this case have been performed analyses to evaluare the focusing capabilities respect to
the number of actuators and the stiffness of the substrate. For the detail and the results of this
analyses that are not purpose of this chapter we refer to [8].
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4.3. Opto-mechanical design

Here we show a simple example of the optimization procedure. Within the framework of a
feasibility study for a robotic 3m class telescope, equipped with VIS and NIR instruments, able
to react to a satellite trigger in less than 50 sec (with a goal of 30 sec): CODEVISIR (Conceptual
Design for a VISible and nIR telescope), we exploited the optimization procedure to define the
thickness of the main bench of the instrumental suite[15].

The instrument includes seven camera able to cover the wavelength range from the Visible
(VIS, 0.4 − 0.9μm) to the Near Infrared (NIR, 1 − 2.5μm) during the same exposure. This
will be allowed by a multichannel imaging configuration that envisages a detector for
each photometric band, delivered through a dichroic cascade along the optical path. Two
ancillary instruments will complete the instrumentation suite, a visible spectrograph and a
photo-polarimeter, fed by rotating the M3 mirror.

Figure 33. Codevisir Instrument suite

Figure 34. Finite Element simplified Model

The Optimization procedure has been oriented to weight minimizing of the overall
system keeping the optical displacement5 below proper requirements. The design variable
considered is the thickness of the bench. In Figure 35 can be observed the image displacement
behavior calculated as D =

√
ΔX2 + ΔY2. The requirement was set at one fifth of a pixel (i.e.

3μm) and the optimization variable has been modified starting from 35mm. The optimization
routine converges to a reasonable value (the thickness variation is less than a reasonable value

5 of one of the seven arms that is also representative of the performances of all the others
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(Δth = 0.016mm)) within 10 steps. The final thickness is around 25mm and the optimized
weight of the instrument is quite less than 1.2Ton and the final displacement is 2.88μm. This
procedure produce an overall weight saving of 270Kg, starting from a very conservative value.

Figure 35. Image Displacement optimization

Figure 36. Thickness and Mass Variation

5. Conclusions
The aim of this chapter was to present the design procedure developed to the numerical
capabilities of modern softwares and hardwares. The framework is very versatile and can be
used simply for performance prediction of optical system or structres and/or for optimization
strategies. The Matlab® code works as a “server” that interact with the “client” Finite Element
(ABAQUS, Nastran, ...) solver managing the input file and extracting the results; the data
are modified in order to be handled by the “client” raytracing software that evaluates the
optical performances. The procedure is under development and integration in order to
allow a multi-variable optimization. We are planning also to evaluates different optimization
algorithms exploiting in particular the sensitivities analyses[5] capabilities of both Finite
Element and raytracing softwares.
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1. Introduction 

Modern aerostructures are predominantly of semi-monocoque construction characterized 
by a thin skin and stiffeners. The latest generation of large passenger aircraft also use mostly 
carbon-fibre composite material in their primary structure and there is a trend towards the 
utilization of bonding of subcomponents in preference of mechanical fastening.  Current 
design philosophy requires that certain stiffeners are terminated, for example due to an 
intersecting structural feature or an inspection cut-out.  In these circumstances, the loading 
in the stiffener must be diffused into the skin, leading to complex three-dimensional stress-
states.  The development and utilization of reliable virtual component testing, in the design 
of composite aerostructures, can potentially yield significant cost reductions. Such reliability 
requires a thorough understanding of the damage mechanisms and failure processes in 
realistic aerostructures, particularly in critical regions such as stiffener run-outs. 

When a stiffener is terminated, the loads which it carries must be transferred to the skin, 
making the design of the run-out region vital, hence improved design methodologies are 
required. Several studies of skin-stiffener failure [1-8] have been carried out. Falzon et al. [7, 
8] investigated the failure of realistic stiffener run-outs loaded in uniaxial compression. 
Different stacking sequences and skin thicknesses at the run-out region were tested and a 
wealth of complexity in the response and subsequent failure was reported. For all tests, 
failure initiated at the edge of the run-out and propagated across the skin–stiffener interface. 
It was found that the failure load of each specimen was greatly influenced by changes in the 
geometric features of these specimens. Falzon and Hitchings [8] used a Virtual Crack 
Closure Technique (VCCT) [9] to predict the crack growth characteristics of the modelled 
specimens and reported shortcomings in the quantitative correlation between the predicted 
and observed failure loads and modes.  
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Bisagni et al. [10] investigated, experimentally and numerically, the postbuckling response 
of hat-stiffened composite panels using cohesive zone models and predicted collapse loads 
which were in agreement with experiments. Krueger [6] used VCCT and a numerically 
effective shell/3D modelling approach to predict the delamination failure of skin-stiffener 
run-outs. Camanho et al. [11] implemented a cohesive element to numerically investigate  
the debond strength of skin-stiffener composite specimens using cohesive zone models and 
compared with experimental results.  

In a recent study by the authors [12], a parametric numerical analysis was conducted to 
optimize the design of the run-out section to increase the crack growth stability under axial 
compression. Improved damage tolerance (stable crack propagation) was reported in the 
modified stiffener run-out design as compared to the baseline configuration. The modified 
design eventually failed catastrophically by interlaminar delamination, not bondline failure 
(debonding), which had not been considered in the numerical study. A more detailed 
analysis of different configurations, which accounts for delamination, was therefore 
undertaken in the work presented in this chapter. Building on the previous findings, the 
merits of a Compliant termination scheme are presented.  

The research in this paper focuses on stiffener run-outs loaded in compression with a 
selection of stiffener termination schemes. These schemes are analysed numerically (Section 
2) in order to compare the influence of the design on the energy release rate for debonding 
and delamination. The Baseline, Tapered and Compliant schemes were manufactured (Section 
3) and tested to failure (Section 4). The experimental results are presented in Section 5, and 
compared to the predictions in Section 6. 

The failure mode of the Tapered specimen configuration was found to be a combination of 
interlaminar and intralaminar failure [12]. The Tapered stiffeners had an unexpected 
delamination in the flange between the bottom-most 0o ply and above the 45o ply. 
Furthermore, the delamination led to an intralaminar failure in the form of a matrix crack 
across the 0o ply near the filler ends and continued delaminating between the filler and 0o 
ply, Figure 19a.  For this reason, a new finite element (FE) model was created in order to 
investigate these modes of damage, Figure 19b and c.  

2. Numerical analysis 

2.1. Skin-stiffener configurations 

The main focus of this study was a new configuration to improve the crack growth stability 
of a stiffener run-out. The structural performance of a baseline skin-stiffener configuration 
under longitudinal compression, with geometry and dimensions shown in Figure 1a, was 
compared to that of a modified parametric configuration shown in b. The modified 
configuration has a widening flange towards the termination end of the stiffener but this 
added material is offset by the taper of the stiffener web. This results in a stiffener design 
with a similar overall weight to the baseline design. For the parametric configuration, 
various values of b, c and d were analysed. The materials used in this study were IM7/8552 
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carbon/epoxy pre-preg, with ply thickness 0.25 mm, for the skin and the stiffener, and 
FM300 adhesive film (0.15 mm thick) for the bondline. 
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Figure 1. Designs and dimensions in mm of a) the baseline stiffener and b) the parametric stiffener. 
 

Material 
Exx 

[GPa] 
Eyy 

[GPa]
Gxy 

[GPa] vxy 
X 

[MPa] 
Y 

[MPa]
S 

[MPa]
GIc 

[kJ/m2] 
GIIc 

[kJ/m2] η 

IM7/8552 154.1 9.8 4.48 0.34 1572.9 254.6 101.2 0.21 0.61 - 
FM300 2.38 - 0.68 - 61 - 49.8 0.9 2.5 8.0 

Table 1. Material properties for IM7/8552, measured in-house, and FM300 

In previous test results with geometry similar to that in Figure 1a, the specimens failed by 
unstable debonding of the stiffener from the skin. Therefore, the different configurations in 
this study were assessed by comparing the energy release rates of the run-outs for a given 
displacement and for several debond lengths.  

2.2. The FE model 

All the FE simulations of the parametric study were carried out in ABAQUS [13] and the 
parameterized models were created in Python [14]. The main model has five different parts, 
the skin, the adhesive between the skin and the stiffener, the parts of the stiffener and the 
filler. The material properties for IM7/8552 measured using standard tests and are shown in 
Table 1. A mesh sensitivity study was carried out to ensure that all results presented are 
mesh converged.  

2.2.1. Element Idealisation 

All parts were modelled with three dimensional hexahedral solid elements C3D8 to 
accurately capture stresses in the through-thickness direction. Also, solid elements are 
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capable of modelling several layers of different materials for the analysis of laminated 
composites which is ideal for our numerical study. In consideration of computational cost, 
linear order elements were chosen and to ensure higher fidelity results whew required, the 
models executed using a mesh density based on a ability to define a detailed mesh 
convergence study. One of the major advantages of solid elements is the feature of defining 
several ply stack ups within a single element along the stacking direction with an improved 
element formulation, illustrated in the Figure 2 below. 

 
Figure 2. Solid element with composite layups 

All the models were meshed with fully integrated solid elements (C3D8) rather using 
reduced integration elements (C3D8R), since the reduced integration elements were not able 
to capture damage variable calculations at all the nodes while delaminating, Figure 3. On 
further investigating this issue, it was observed that the problems arose because of  

 
Figure 3. Contour plot of cohesive damage variable with Hourglass modes 
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hourglassing. Even though this particular problem could be partially mitigated by using the 
hourglass stiffness enhanced element formulation, the use of C3D8R elements in the 
numerical models was avoided for greater accuracy. Consequently, C3D8 elements were 
used in all the models. 

2.2.2. Stacking Sequence 

The skin consists of eight plies, while the stiffener consists of five plies. The stacking 
sequences used in [1] for the skin and the stiffener, are shown in Table 2. Figure 4 shows the 
ply orientations for the skin. The thickness of each ply is 0.25mm (double thickness) and the 
number of integration points is set to three within each ply/element through the thickness. 
 

Part Stacking Sequence 
Skin [45/-45/0/90]s 
Stiffener (per half section) [0/90/-45/45/0] 

 

Table 2. Stacking sequence for the skin and the stiffener 

 

 
 

Figure 4. Stacking sequence for the skin 

2.2.3. Mesh 

The number and distribution of elements is a crucial step when using the FE method to 
solve structural problems. Figure 5 shows the element families that are most commonly 
used in stress analysis. The main difference among the element families is the geometry type 
that each of the family represents. As mentioned earlier, an 8-node linear brick element was 
used and a course mesh of the modified design is shown in Figure 6. 
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Figure 5. Commonly used element families in ABAQUS  [13] 

 
Figure 6. Course mesh for the modified design with 3D continuum elements 

2.2.4. Constraints 

Constraints were defined in the Assembly module [13] for the initial positions of instances. The 
type of constraint created for this model was a “tie constraint”, which allows the user to fuse 
together two regions even though the meshes created for sectors may be dissimilar [8].  For 
the current model, sixteen constraints were created between all the parts being in contact. In 
Figure 7 it can be seen how the master and the slave surfaces are displayed in the model. 

2.2.5. Boundary conditions 

In the current study, two boundary conditions were defined. The first condition, named BC-
1, was a displacement/rotation type boundary condition. All displacements and rotations 
were set to zero. BC-1 was applied to one edge of the stiffener as shown in Figure 8. The 
second BC, named BC-2, was a displacement/rotation type BC as well, where all 
displacements and rotations were set to zero apart from  U3, which was set to U3=1. U3 is 
the displacement in the axial direction and represents the testing machine’s displacement. 
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Figure 7. Surfaces constraints between the skin (master surface-red) and the adhesive (slave surface-
pink) 

 
Figure 8. Modified model with BC-1 on the left edge (clamped) and BC-1 on the right edge (U3=1) 

2.2.6. Mesh sensitivity study 

Finite element analysis provides an approximate solution and it can only guarantee that 
equilibrium is satisfied on average over an element. This does not mean that it will satisfy 
equilibrium over any smaller volume compared to a complete element. As a consequence, 
equilibrium is enhanced when the size of the element is decreased. Moreover, in regions of 
stress concentrations, it is necessary to increase the accuracy of the FE solution by either 
using elements with higher-order shape functions (p-refinement) or by using a finer mesh of 
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elements (h-refinement). The goal that a designer needs to achieve is to select the best mesh 
density which is not prohibitively expensive to run and at the same will provide accurate 
and acceptable results [15]. 

In this study, three different meshes were used (a coarse mesh, an intermediate mesh and a 
fine mesh). 13100 elements were used for the coarse mesh, 18700 elements for the 
intermediate mesh and 51000 elements for the fine mesh. Table 3 illustrates the three 
different meshes used, the strain energy and the running time of each model.  According to 
the values of Table 3, the solution is converged. Since the running time for the intermediate 
mesh was 35 minutes and the results appeared accurate and acceptable, this specific density 
of elements was selected for the rest of this study. 
 

Mesh Strain Energy 
(KJ) 

Number of 
Elements 

Running Time 
(minutes) 

Deviation 
(%) 

Coarse 30150 13100 25 - 
Intermediate 30138 18700 35 0.039 
Fine 30109 51000 90 0.096 

 

Table 3. Mesh Sensitivity Study results. 

Moreover, investigation was undertaken to assess the accuracy of using multiple ply 
orientations within a solid finite element. Abaqus® provides the option to make a partition 
through the ply thickness and define the material orientation. As a result, eight partitions 
were created for the skin and five for each stiffener using material orientations given in 
Table 2. The results obtained from both approaches were similar, as illustrated in Figure 9. 

 
Figure 9. Strain energy with composite lay-up (blue line) and with material orientations (red line) 

2.2.7. The Python script 

In order to perform the parametric study, a large number of models were created and a 
script that generates these models was needed. This script was written in Python [14] 



 
Damage-Tolerant Design of Stiffener Run-Outs: A Finite Element Approach 

 

285 

because of the advantage of using the Abaqus scripting interface to generate automate 
repetitive models and execute. 

The parametric script generates the stiffener run-out models with different crack lengths. 
The script uses a basic stiffener run-out configuration and changes the design each time 
according to the parameter values. When a new design is generated, the script propagates 
the crack and the energy release rate is calculated for every step.  

2.3. Results from modelling 

2.3.1. Energy Release rate along crack 

After converging to an optimum mesh density, failure in the stiffeners was captured by 
consecutive models, propagating a delamination crack or a debonding crack, 1 mm at a 
time. The results of the parametric study are shown in Fig. 10, where the values of  
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Figure 10. Normalized energy release rates as a function of crack length (a) comparison between 
baseline stiffener design (Fig. 1a) and selected modified stiffener (Fig 1b with b = 3 mm, c = 10 mm and d 
=6.25 mm), (b) Influence of parameter b on G, (c) Influence of parameter c on G and (d) Influence of 
parameter d on G. 
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GT = GΙ + GΙΙ + GΙΙΙ, the total energy release rate, have been normalized to the GT of the 
reference parametric stiffener for 0.5 mm of crack length. Fig. 10a compares the normalised 
energy release rate for the baseline and selected parametric stiffeners. The negative slope of 
the G(a) curve for the latter indicates stability of crack growth (assuming constant fracture 
toughness). The influence of parameters b, c, and d is presented in Fig. 10b, c and d. Given 
the objective of optimising for stability of crack growth, the configuration with b = 3 mm, c = 
10 mm and d = 6.25 mm was selected to be carried out for the consequent stages of this 
study. 

 
Figure 11.  (a) Front view of failed specimen; (b) Exploded view showing the failed area; (c) Front view 
of bottom part showing 00 plies ; (d) Bottom view of the upper part showing delaminated 450 plies  

Interlaminar and intralaminar failures were observed in the modified run-out stiffener. The 
stiffener had an unexpected delamination between the 00 ply and the 450 ply. After 
examination of the specimens it was assumed that the delamination led to an intralaminar 
failure in the form of a matrix crack across the 00 ply near the filler ends and continued 
delaminating between the filler and 00 ply. In Figure 11, the failed specimens clearly shows 
that delaminations and matrix cracks occurred in the 00 ply on both sides of the specimen. 

3. Modeling the debonding of the stiffener 

The finite element model of the stiffener run-out had the following features: 

1. Skin - single part of (450/-450/00/ 900)S laminate 
2. Filler - made-up of 00 fibres 
3. Left - 00 lamina of the stringer 
4. Left - single part of (00/ 900/-450/450) laminate of the stringer 
5. Right - 00 lamina of the stringer 
6. Right - single part of (00/ 900/-450/450) laminate of the stringer 
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The part descriptions are clearly illustrated in a front view of the skin-stiffener assembly, 
Figure 18. 

0 plies

Rest of plies

Filler

Skin
 

Figure 12. The parts of the FE model 

Cohesive interaction

 
Figure 13. Illustration of imposed cohesive properties for debonding mode. 

The interface between the skin and the stiffener was connected by using a surface-based 
cohesive layer, as seen in Figure 12. Cohesive zone modelling is generally used for the 
numerical simulation of interlaminar failure. Damage initiation is driven by a traction 
seperation law and the value of the maximum traction, to, Figure 14(a). New crack surfaces 
are formed when the fracture toughness Gc is equal to the area surface under the traction-
separation curve. Considering the nature of predictions made by the parametric study, the 
model was analysed with cohesive interaction properties of adhesive FM 300 and listed in 
Table 4.  
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Figure 14. Illustration of (a) Traction-separation law for cohesive zone models (b) Modified law to 
implement in FEM 

FM300 
(adhesive) 

Normal 
direction 

First shear 
direction 

Second shear 
direction 

BK law 
η 

Initial linear 
elastic 

behaviour 

Knn in Nmm-3 Kss in Nmm-3 Ktt in Nmm-3 

106 106 106  
Damage 
initiation 

N in MPa S1 in MPa S2 in MPa 
50 100 100 

Damage 
evolution 

Gn  in N/mm Gs in N/mm Gt in N/mm 
8 

0.9 2.5 2.5 

Table 4. Cohesive interaction properties  

3.1. Initial linear elastic behaviour 

In order to accurately predict damage initiation, the interaction of traction components was 
taken into account and the quadratic stress criterion used. This criterion is included in 
Abaqus and was formulated based on Ye’s criterion [13] including the interaction between 
traction components. According to this criterion, the damage initiates when a quadratic 
interaction function reaches a value of one. The quadratic interaction function is shown in 
the following equation.  

 
2 2 2

0 0 0 1n s t

n s t

t t t
t t t

          + + =     
          

 (1) 

where, t0n , t0s and t0t are the peak values of the stress when the separation is either purely 
normal to the interface or purely in the first or the second shear direction respectively. In the 
present numerical study, these values for IM7/8552 are 50 MPa in the normal direction and 
100 MPa in the two shear directions[10], see Table 4. 

When the initiation criterion is met, the cohesive stiffness degrades at a rate defined by the 
damage evolution model. The overall damage of the damage zone is represented by a scalar 
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damage variable, D, and is implemented in the damage evolution model. After the damage 
initiation, the damage variable monotonically evolves from 0 to 1 on increasing the loading. 

For the mix-mode definition of fracture energies, Benzeggagh-Kenane’s criterion [16] (BK 
law) was used which defines the energy dissipated as in equation below, 

 ( )        c c c cS
n s n

T

G
G G G G

G

η
  + − = 
  

 (2) 

with, 

  T n sG G G= +  (3) 

  S t sG G G= +  (4) 

where Gn, Gs and Gt are the fracture toughness values in the normal and two shear directions 
respectively which were measured in-house for IM7/8552 and given in Table 4. In this study 
the value of the BK mode-mixity power parameter, η=1.6, was obtained from Maimi [17, 18]. 

3.2. Response of the Numerical Model 

The debonding failure initiation load predicted by the model was compared with the 
debonding loads predicted by using the energy release rate and the experimental results, 
Table 5.  

 

 
Experiment Gavg 

Prediction 
Gmax 

Prediction 
Cohesive layer 

Prediction 

Failure load [kN] 17.7 19.2 17.5 18.7 
Difference from 
experiments 

- 8.5% 1.1% 5.6% 

Table 5. Debonding loads 

Recalling the results from the energy release rate analysis, when the maximum energy 
release rate across the width of the stiffener was used, the predictions were closer to the 
experimental results. In addition, when the average energy release rate was used, the 
difference from the experimental results had an over-prediction of 8.5%. By using the 
cohesive zone model, the difference with the experimental results was 5.6%.  

Also, the debonding growth along the width of the specimen correlates well with the 
predictions using strain energy release rate across the width of the stiffener as can be seen in 
Figure 15. Comparing the FE model pattern with the Tapered slop on the right, it is clearly 
observed that there is a correlation between the extent of damaged and the value of 
normalized strain energy release rate across the width of the specimen.  
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Figure 15. Damage growth pattern compared with energy release rate predictions for tapered specimen 

3.3. Modeling the debonding failure using VCCT 

The implemented VCCT method in Abaqus standard, developed by Boeing and Simulia, 
suggested promising results, especially when the mismatched, tie-constrained, meshes had 
only 3% error comparing with pairing meshes. As can be seen in Figure 16(a) there was 
good correlation between the VCCT and the parametric study. On the other hand, the VCCT 
method could not capture the increase in normalised GT/GC arising from the geometric 
discontinuity at the edge of the flange. In order to capture the detail at the edge of the 
flange, the mesh resolution was increased and was biased towards these edges, Figure 17, 
and the results can be seen in Figure 16(b). Despite the good results, the size of the model 
and the time needed for execution made the use of VCCT impractical and was not used in 
further investigations. 
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Figure 16. Comparing the results of the parametric study with the VCCT method (a) along the crack 
and (b) along the width of the stiffener. 
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Figure 17. The refined model that used in the VCCT method 

4. 2nd iteration 

The objectives defined in the first part of this study were to create two FE models for the 
baseline and the modified configuration. The baseline stiffeners failed due to debonding of the 
skin/stiffener interface, while the modified stiffeners failed by delamination between the 00 and 
450 ply interface. Improved damage tolerance (stable crack propagation) was reported in the 
modified stiffener run-out design as compared to the baseline configuration. The modified 
design eventually failed catastrophically by interlaminar delamination, not bondline failure, 
which had not been considered in the numerical study. A more detailed analysis of different 
configurations, which accounted for delamination, was therefore undertaken. Building on the 
previous findings, the merits of a compliant termination scheme are presented. 

4.1. Skin stiffener runout configurations  

The structural performance of three different skin-stiffener configurations – Baseline (B), 
Tapered (T) and Compliant (C) – under longitudinal compression, with geometry and 
dimensions shown in Figure 18, was assessed. Compared to the Baseline stiffener (Figure 
18a), the other two configurations have a widening flange towards the termination end of 
the stiffener but this added material is offset by the taper of the stiffener web (Tapered 
configuration, Figure 18b). The third configuration includes a curved tape (Compliant, Figure 
18c). 

The proposed Compliant design was developed by considering potentially beneficial local 
stiffness variations. This resulted in a stiffener design with a similar overall weight to the 
Baseline design. For the modified configurations, various values of b, c and d (see Figure 18b) 
were analysed [12].  

The failure mode of the Tapered specimen configuration was found to be a combination of 
interlaminar and intralaminar failure [12]. The Tapered stiffeners had an unexpected 
delamination in the flange between the bottom-most 0o ply and above the 45o ply.  
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Figure 18. Stiffener design configurations (dimensions in mm). 
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Figure 19. a) Tapered stiffener after testing, b) FE model showing delamination path, and c)  FE model 
of a specimen with  boundary conditions. 
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Furthermore, the delamination led to an intralaminar failure in the form of a matrix crack 
across the 0o ply near the filler ends and continued delaminating between the filler and 0o 
ply, Figure 19a. For this reason, a new FE model was created in order to investigate these 
modes of damage, Figure 19b and Figure 19c. 

4.2. Energy release rate along crack 

The three different configurations, Baseline, Tapered and Compliant (see Figure 18), were 
analysed for debonding and delamination growth stability. The results of this analysis are 
presented in Figure 20, where the values of GT = GΙ + GΙΙ + GΙΙΙ, the total strain energy release 
rate, have been normalized to the GT of the reference parametric stiffener for 0.5 mm of crack 
length. Figure 20 compares the normalised strain energy release rate for the Baseline, the 
Tapered and the Compliant stiffeners. The negative slope of the G(a) curve indicates crack 
growth stability, while a positive slope indicates instability (assuming constant fracture 
toughness). Recalling the failure modes obtained experimentally [12] the Baseline stiffener 
failed by debonding and the Tapered stiffener initially experienced debonding until it finally 
failed by delamination. This is in agreement with predictions, Figure 20. Consequently, both 
models were able to correctly describe these experimental results [12]. In addition, the 
stability analysis for the Compliant stiffener predicts that this design will fail stably by 
debonding, Figure 20. 

Debonding

Delamination

Baseline        Tapered      Compliant

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

N
or

m
al

iz
ed

 G
T

a [mm]
 

Figure 20. Normalized strain energy release rates as a function of crack length; comparison between 
Baseline stiffener design, Tapered stiffener and Compliant stiffener with b=3 mm, c=10 mm and d=6.25 mm. 
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4.3. Energy release rate along the width of the crack tip 

The strain energy release rate along the width of the crack tip was calculated for the Baseline, 
Tapered and Compliant configurations (Figure 18). Fracture initiation is expected when the GT 
exceeds the fracture toughness Gc for a given mixed-mode ratio GII  / GT  at each point along 
the crack tip. In other words, propagation at each point occurs when GT / Gc >1 [19, 20]. The 
interlaminar fracture toughness Gc can be calculated by using the equation 2 [20]  

The value of Gc is normalised to the width-average value for the Tapered specimen.  It can be 
observed that the trend is similar for the Baseline and Tapered specimen types but is different 
in the centre of the Compliant stiffener. This is due to the difference in the web of the 
stiffeners. The curved taper has reduced the normalized strain energy release rate in the 
centre without affecting the trend in the flange. The maximum value of the energy release 
rate can be used to predict the load corresponding to the initiation of fracture using 

 c

FE T

GP
P G

=  (5) 

where P is the load at initiation of fracture, PFE is the load from the FE model, Gc the critical 
strain energy release rate (Equation 1.26), and GT is the strain energy release rate predicted 
by the FE model as defined previously. Two different predictions for P can be made: one 
using the maximum value of GT along the width, and another using the average, Table 6. 

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

0 2 4 6 8

N
or

m
al

ise
d 

G
T 

/ G
c

Distance across width [mm]

Baseline      Tapered      Compliant

  
Figure 21. Normalized GT/Gc across the crack tip for crack a = 1 mm for the Baseline, Tapered and 
Compliant specimens. 
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5. Experiments  

The tests were carried out in an Instron testing machine, equipped with a 100 KN load cell, 
at a loading rate of 0.5 mm/min. Load and crosshead displacement were recorded 
continuously by a PC data logger connected to the load cell and the Instron machine at a 
sampling rate of 2 Hz. The specimens were aligned by careful measurement in the loading 
direction to avoid bending. The Imperial Data Acquisition (IDA) program was used to 
record load and displacement during the tests.  

 

 
Predicted failure load [kN] 

(% difference with respect to 
experimental) 

Experimental failure load 
[kN] 

 Based on Gavg Based on Gmax  
Baseline Stiffener 19.00 

(+15.2%) 
16.56 

(+0.4%) 
0.34
0.3916.49+

−  

Tapered Stiffener 19.17 
(+8.2%) 

17.45 
(-1.5%) 

0.16
0.2217.72+

−  

Compliant 
Stiffener 

19.93 
(+10.6%) 

18.17 
(+0.8%) 

0.16
0.2918.02+

−  

Table 6. Failure loads for the different specimen types, as well as the predicted failure loads using Eq. 2. 

AE sensors were used to identify and investigate failure, within the specimens, during 
testing. The AE equipment was manufactured by Physical Acoustic Corporation (PAC) and 
failure was monitored by AEwin software. Broadband (WD) sensors with an operating 
frequency range of 100 Hz to 1000 kHz were used and positioned in order to obtain the best 
results without affecting the specimens behaviour [21].  

The Baseline stiffeners had an average failure load of 16.5 kN while the Tapered stiffeners had 
an average failure load of 17.7 kN and the Compliant an average failure load of 18 kN, Table 
6. The fracture surfaces for selected specimens are shown in Figure 23, and the load versus 
displacement curves for selected specimens of the three stiffener designs are shown in 
Figure 22. The predicted loads (using Eq. 2) match well with the experimental values when 
the maximum G across the width is used, Table 6. 

The acoustic emission signals (Figure 22) show that there was an increase in AE activity 0.1 
mm before catastrophic failure for the Baseline specimen. For the Tapered specimen type, the 
increase in AE emission started about 0.05 mm before catastrophic failure and for the 
Compliant specimen, 0.02 mm. Figure 22 also shows the peak frequency during the tests for 
all specimen types. It can be observed that there is some very low-energy micro-cracking 
from the start of the test and this is possibly at the resin pots. The Tapered specimen 
configuration promoted a combination of failure modes including delamination and fibre 
bridging which preceded catastrophic failure. In addition, the Compliant stiffener, according 
to AE data and as visually observed (Figure 23c), suffered only from debonding. 
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Figure 22. Loads and Peak frequencies versus displacement for a) the Baseline b) the Tapered and c) the 
Compliant stiffeners. A scale on the right hand side indicates the mode of failure typically associated 
with these peak frequencies [21]. 
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(a)  

 

(b)  

 

(c)  
 
Figure 23. (a) Baseline stiffener, (b) Tapered Stiffener and (c) Compliant Stiffener after failure respectively. 

6. Remarks 

The strain energy release rate analysis yielded good results in the investigation of the run-
out design influence in debonding/delamination for stiffener terminations. The FE models 
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accurately predicted the failure loads and failure modes for the specimens tested and the 
predictions were improved when the distributions of the strain energy release rate across 
the width was considered. The differences in the predictions using the average and the 
maximum energy release rates are shown in Table 6 and can be compared to the 
experimental failure loads. The load-displacement, as well as the peak frequency-
displacement plots (Figure 22), show that the Tapered design is slightly more damage 
tolerant than the Baseline one and this improved further with the Compliant design. The AE 
monitoring proved to be valuable in detecting and analysing the failure modes experienced 
by the specimens.  

7. Conclusions 

This study was based on the strain energy release rates for debonding and delamination and 
successfully predicted the failure loads for the three different specimen types. The 
predictions were more accurate when the maximum strain energy release rate across the 
width was used. It can be concluded that the variation of the energy release rate across the 
width should be considered when stiffener run-outs are designed. AE data recorded during 
skin-stiffener run-out compression tests proved useful to analyse the failure processes which 
take place in these specimens. The results show that in the design of skin-stiffener run-outs 
it is important to consider the possibility of failure modes other than debonding, and that 
compliant termination schemes offer the possibility of improved damage tolerance. 
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1. Introduction 

Numerical application to geomechanics is an area of research that has grown rapidly since 
its origins in the late 1960s. This growth led to new methodologies and analysis approaches 
that are nowadays commonly employed in geotechnical, mining or petroleum engineering 
practice.  

The circular tunnel boundary problem is frequently encountered in rock and soil mechanics, 
geotechnics and generally in mining and petroleum engineering. Consequently, there is a 
great interest in solving boundary problems involving the excavation of an underground 
opening. Moreover, time dependent behavior of geomaterials benefits by a special attention 
in constitutive and numerical approach. Regarding the constitutive modeling and analytical 
approach [1] concerns both with vertical and horizontal underground openings excavated in 
an elasto-viscoplastic rock mass, governed by the constitutive laws which go by his name 
and for which analytical solution for the displacement and viscoplastic strain are derived; 
[2] provides analytical results for circular and non-circular openings with thermal effects as 
well; [3-5] present results in approaching the problem both analytically (convergence-
confinement method) and numerically by FEM. 

The viscoplastic approach in FEM has been considered by many authors, in terms either of 
numerical stability of schemes used in viscoplasticity, see [6-8], or practical applications 
using FEM solutions in different areas. For instance, tunneling using FEM for viscoplastic 
materials has been investigated widely, as well, e.g. [9] approaches the problem with 
outstanding results in computational geomechanics, with special reference to earthquake 
engineering, in numerical modeling of dynamic soil and pore fluid interaction and 
earthquake-induced liquefaction and multiphase pollutant transport in partially saturated 
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porous media; Zienkiewicz provides outstanding numerically approaches in a wide range of 
problems, e.g., [10] is devoted to computational geomechanics; [11] focuses a great interest 
in the multi-disciplinarily aspect of the problem, taking into account also adjacent 
phenomenon occurring at the rock-support interaction; [12] deals with ductile damage and 
fracture FE modeling of viscoplastic voided materials for high strain rate problems,[13] 
provides a finite-strain viscoplastic law coupled with anisotropic damage both theoretical 
and numerical approach, [14] develops a FE procedure to model the tunnel installation and 
the liner to predict the likely extent of damage to surface structures caused by nearby 
shallow tunneling, [15] deals with FE modelling of excavation and advancement process of a 
shield tunnelling machine, [16] develops a FE micromechanical-based model for hydro-
mechanical coupling for tunnelling application, [17] applies a model based on plastic 
damage evolution and permeability to excavation-disturbed zone simulation of the 
mudstone shield tunnel; [18] analyses tunnel depth effect on the stress and strain state 
around the tunnel; [19], [20] studies the face tunnel influence in the analysis of a circular 
tunnel with a time-dependent behaviour, etc. 

This chapter deals with a FE code implementation of an elasto-viscoplastic constitutive law. 
The numerical calculations are performed with a finite element code called CESAR made in 
LCPC-Paris [21]. The viscoplastic module is coded and implemented in the FE code CESAR 
by the author. The validation of the numerical code is performed in different steps: with the 
boundary problem solution of the triaxial laboratory tests, with analytical solution of creep 
step, and of supported and unsupported underground openings in viscoplastic rock mass. 
This chapter is focused on further complex applications, such as the tunnel excavation 
successive phases and lining mounting which are approached using the viscoplastic 
constitutive module. 

2. The elasto-viscoplastic constitutive equation 

The constitutive law implemented in finite element code is proposed by Cristescu. The 
hypotheses for the constitutive equation formulation are (see [1]): 

i. The material is considered homogeneous and isotropic. Thus, the constitutive functions 
depend only on the invariants of the stress and strain tensors. The stress tensor and the 
strain tensor are denoted  and ε , respectively and the stress tensor principal 
components are denoted as:      1 2 3 1 2 3, , , , , . Among the stress invariants, those with 
an important physical meaning are:  

- the mean stress:   
     

  1 2 3

3
; 

- the equivalent stress                2 2 2 2
1 2 3 1 2 2 3 3 1 (or the octahedral shear stress 

   2 2
3 3

II with II being the second invariant of the stress deviator). 

ii. The displacements and the rotations are assumed small, so that      E I , where E

and    being the elastic strain rate and the irreversible strain rate respectively. 
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iii. The component of the elastic strain rate satisfies the Hooke law  

 
    
 

   
1 1 1

3 2 2
IE

K G G  
with K, G being the bulk and shear modulus, respectively and I being the identity tensor. 

iv. The component of the irreversible strain rate satisfies: 


 

  
 ( )( , ) 1

( , )
ε σ

σ

I
I W t Fk d

H
, 

where: k represents the viscosity coefficient, that can depend on the stress state and the 
strain state, and probably on a damage parameter d describing the history of the micro 
cracking the rock was subjected to, and the bracket < > represents the positive part of 
respective function: 

    / 2A A A A  

The irreversible stress work is used as a hardening parameter or internal state variable, split 
into volumetric and deviatoric parts and it is given by the quantity: 

              
0

.σ ε
T

I I I I
v dW T t t dt W T W T   (1) 

We introduce the damage parameter d, see [1], defined by:  

       I I
v max vd t W t W t   (2) 

describing the energy released by micro-cracking during the entire dilatancy period. In (2)

maxt  represents the time for which I
vW is maximum. The failure threshold is considered to 

be the total energy released by micro cracking during the entire dilatancy process and it is 
characterized by the following parameter (constant): 

      .I I
f v max v failured W t W t   (3) 

H(σ ) represents the loading function, generally a function of stress tensorσ , with 
     , IH W t the creep stabilization boundary equation, the function H depending on the 

two stress invariants mentioned above. 

F(σ ) represents a viscoplastic potential, that establishes the orientation of    . 

v. The initial yield stress of the material is zero or very close to zero. 
vi. The applicable domain for the constitutive equation is considered for compressive 

stresses (positive) and bounded by the failure surface which may be incorporated in the 
constitutive equation.  

We consider therefore, the following constitutive equation: 
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   
         
 1 1 1 ( )( , ) 1

3 2 2 ( , )
σI σ σ

σ

IW t Fk d
K G G H

  (4) 

For instance, for the model describing the Borod coal behavior (see [1]), the constitutive 
functions and material constants used are:  

                         

2
0 * 1 0*

0 0 *
0 1 02 * 1

sin( / ) if 0( / )
( , ) : /

if/
c c

H a b
c ca a

  (the yield surface) 

     ( , ) : ( , )F H   (5) 

where a0 = 7.65  10−4 MPa;  a1 = 0.55;  a2 = 8.159  10−3;  b0 = 0.001 MPa; c0 = 4.957  10−4 MPa;  
c1 = 4.8955  10−4 MPa;  =171.9270;0=1,0996MPa; k =6  10−6; s-1 (the viscosity coefficient); df = 
4.48  103 Jm−3; * =1 MPa and the elastic constants are: E = 798.385 MPa,  = 0,327. 

The relation (5) shows that the viscoplastic potential equals the loading function, fact that 
determines an associated flow rule. 

For the model describing the saturated sand behaviour, the constitutive functions and 
material constants are:  

 
      

 
   
 

7

53

( )( , ) :

3

H a b c   (the yield surface) 

 

   

 

 

3
2

3 3
2 2

31 1
2 2 21

2

3 5
2 2 1

2

1
1 3

1 1

2 1
2 32( , ) : 2
2 3 2 2

1 1 2 1
3 3 3

2 ln
2 2

2 1
3

h
F fh

f f f

f
h fh

f f
f

                     
 
 

                                                 
                     

 

1
2

3
0 1 the plastic potentialg g






  

 

where  -7 1=4.834 10  (kPa)a ,  3=1.33 10b ,  3=1.058 10c ,



1

2
1=2.34 10 (kPa)h , 0 =0.005g , 

 -6 -2
1=0.62 10 (kPa)g , f=0.562,  =1.34,  -6 1=3.6 10 sk (the viscosity coefficient) and the elastic 

constants are: E = 205300 kPa,  = 0.33.  

For this model, as the viscoplastic potential differs to the loading function, determines a non-
associated flow rule. 



 
Finite Element Analysis for the Problem of Tunnel Excavation Successive Phases and Lining Mounting 305 

3. The numerical integration of the elasto-viscoplastic equation 

In this paragraph the way to implement the elasto-viscoplastic law presented in previous 
paragraph in finite element code is described. The interface with the program is performed 
by the calling of the subroutine that carries out the numerical integration of the proposed 
constitutive law, at a Gauss integration point level. The implicit form for the constitutive law 
is used and two solving methods, namely: Euler semi implicit method (   scheme) and 
Runge - Kutta method of fourth order.  

The numerical integration of equation (4) is performed alternatively by two methods: 

a. Semi implicit Euler method (   scheme) in which the evaluation of the viscoplastic 

strain increment is done with the rule:            1 2( 1 ) ) , [0,1]vp vp vp t where

  1 ( )σvp f W ,          2 1 1( , ) and ,σ σ σvp f W W W are the stress increment and 

associated irreversible work increment calculated with the standard scheme, 

corresponding to the viscoplastic strain increment 1
vp ; ,σ W are the known values of 

stress and irreversible work at the beginning of the step and function 

     
 




 
, , 1

,
σ σ

σ

IW t Ff W k d
H .  

b. Runge-Kutta method performs more evaluations of the function inside each time step 
dt, propagating thus on an interval a solution that is a combination of a few Euler type 
steps (each of it implies an evaluation of function f) and further using the obtained 
information to match an expansion in Taylor series of higher orders.  

In particular, Runge-Kutta method of fourth order employed to integrate the proposed 
constitutive equation uses four evaluations of function f for the considered time step:          

 
 
 
 



    

    

    

















1

2 1 1

3 2 2

4 3 3

,

,

,

,

σ

σ σ

σ σ

σ σ

vp

vp

vp

vp

f W

f W W

f W W

f W W

 

with        1 2 3 1 2 3, ,σ σ σ W W W the intermediate evaluations of the stress increment, and 
the irreversible work increment respectively. 

Runge-Kutta method of fourth order is used for the numerically integration of equation 
(4) to evaluate the viscoplastic strain increment and it is also used to evaluate the 
irreversible work (1) from the evolution differential equation of the hardening parameter
 iW .  
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4. The numerical solution of nonlinear problems 
The classical solution algorithms used in finite element method are displacement type, 
incremental and iterative ones that often present some convergence difficulties related to the 
applied loading and the searching of the limit loading.  

Generally, the solution algorithms of nonlinear problems will depend on the specific 
problem under consideration. At the same time, the algorithms are made up of two levels: 
one global level, of the general scheme of solving, that enables the calculation of the 
displacement field at the nodal points of the discretized structure; and a local level, of the 
integration scheme of a nonlinear constitutive equation, which enables at a point, as starting 
with the stress and strain history at that point, a new state of stress to be calculated.  

The two schemes have a great reciprocal influence upon the solving process. Concerning the 
integration of the constitutive law, it may be done through explicit or implicit schemes. 

The treating of a nonlinear problem with finite element method leads to the solving of a 
system of equations that may be put in the form: 

      , ( ) ( )u R u Pt   (6) 

where: u represents the displacement vector in the nodal points of the structure under 
consideration, R(u) is the nodal forces vector corresponding to the stresses at moment t, P 
designates the total loading applied to the structure and ( )t represents the loading factor 
applied at moment t. 

The solution of the system of equations (6) is in fact the pair (u, ( )t ) associated to the 
displacement response of the structure at the loading which it is subjected to. Generally it is 
impossible to obtain a solution with a direct solution technique, so an iterative process has 
to be adopted. Often, the used iterative process is based by the linearization of the nonlinear 
equations to be solved.  

The iterative process assumes that the constitutive equation can enable the calculation of the 
exact value of the inequilibrium (residual) with respect to the only unknown entity, which is 
the present displacement u1. For this reason it is necessary to perform an incremental 
loading of the structure. 

The algorithm for solving a static nonlinear problem with the initial stress method used in 
the framework of the finite element program is: 

 
 

1

1

0
initialization

P
u

 

j = 1 loop on the increments 
The incrementation of the loading P 
i = 1 loop on the iterations (We assumed i state known and i+1 state has to be 
calculated).  
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Setting up the term     dBj t
i i iF P v  that has to be calculated as accurate as possible. 

The calculation of the global stiffness matrix   dK B DBt v , where the matrix D needs not be 

quite accurate and can be:  

- elastic matrix (the initial stress method) 
- the constitutive matrix Devp (the tangent stiffness method)  

The solving of the algebraic system   FK i iu (nonlinear if K=K(u)) 

  1 FKi iu  solving the system of equations 

   1i i iu u u  updating displacement 
   1Bi u  displacement-strain relations 

    1i i i  calculation of the incremental stresses with the constitutive law;   can be 
calculated as: 
- elasticity:   De

i i . 

- viscoplasticity: *     ( )D vpe
i i i , with    /vp

i f ,proportional with the 
derivative of the    viscoplastic potential. 

   * Devp
i i   (explicit form). 

From the law   ( )i if (implicit form), the numerical integration may be done with θ 
scheme, with Runge-Kutta method, the consistent matrix, etc. 

   1 1( ) dR Bt
i iu v  calculation of the residue  

   1 1P ( )Rj
i iu  equilibrium check            

Convergence test:  
no  i = i+1  (next iteration) 
yes  j = j+1  (next step) 

where u represents the vector of nodal displacements, v is the vector of out of balance nodal 
forces, B designates the matrix of the shape functions for strain, P j represents the vector of 
the known nodal applied forces, ( )R iu  is the vector of the equivalent nodal forces, due to 
the stresses i . These nodal forces are consistent with the current value of unknown u. 

Returning again on the fact that it can be also deduced from the algorithm above, namely 
that two calculation levels can be distinguished: 

- local level: the application of the constitutive law for a material point (in fact, Gauss 
integration point in finite element analysis) for the calculation of  the constitutive matrix 
D,   ( )D and the stresses  1i   . 

- global level: the application of the iterative process upon the vector of nodal 
displacements. 
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In order to ensure the convergence of the iterative process, the non-equilibrium of the 
structure (the residual), the displacement variation and the work variation done during the 
iteration have to be tested at every iteration. So, the testing is done upon the following 
quantities: 

- testing the residue 


 
 0

( )
;

( )
i

R
u
u

 

- testing the displacement


  ;i
D

i

u
u

 

- testing the work 
 

 
 0 0

( ) .
.

( ) .

T
i i

WT

u u

u u
 

It has to be mentioned the fact that an iteration has no physical meaning: in fact, at the 
beginning of the iteration, the equilibrium is satisfied, but, at the end of one iteration, the 
constitutive law is satisfied in preference to the equilibrium. Therefore, only at the end of an 
incremental stage, the solution can converge to a physical sense for the studied structure. 

5. Comparison of the numerical and analytical solution for the creep step           

In order to test the subroutine which performs the numerical integration of the elasto-
viscoplastic constitutive equation, a comparison of the numerical solution with the 
analytical formula for the creep step is performed. For this purpose, an analytical formula is 
used for the calculation of the strain rate in the case of the application of a number of 
successive steps at constant stress, namely: it is assumed that at moment 0t the stress state is 
increased suddenly to the value of  0σ t and it is kept constant.  

5.1. Determination of the analytical solution for creep step 

To establish the formulae that describe the creep deformation, we will write firstly the 
formula which supplies the variation of  IW t when all stress components are constant; it is 
easily obtained by integration of the constitutive law (4) (see [1]):  

 
 

 
 

   
                 

0
01 1 exp

, ,
σ

σ

I IW t W t k F t t
HH H   (7) 

where      0σ σt t constant and  0
IW t is the initial value of IW for  0t t , denoted 

further IPW .  

This is the relation that describes the variation in time of  IW t under a constant stress. The 
variation in time of  IW t is longer or shorter depending especially on the value of the 
viscosity parameter k.  
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Introducing the left hand side of the relation (7) into the constitutive equation (4), we get the 
total strain under constant stress:  

 

 
 

 

   
                 





0

0
0

1
,

1 exp
1

σ
ε ε σ

σσ
σ

IW t F
H k F t t

F H
H

   (8) 

using the initial conditions: 

  
       

 
 0

0 0 0
1 1 1; 0;

3 2 2
ε ε I σIt t

K G G
  (9) 

where     0σ σt t  is the initial stress state, reached instantaneously and taken with respect 

to the state at 0t  when the loading is applied (it represents the elastic response). It is 
observed that the value of irreversible strain rate during the creep is governed by the 

expression 
 

 
 

1 .
,

IW t
H

 

If we wish to have a stress path made up of small stress increments σ , followed by time 
intervals of constant stress, we get for the strain increments some formulae similar with (8), 
namely:  

 

   
 

 
 

   
 

 
 

   
                  


   
                  







0

11
1 0

0

22
2 0

1
,

1 exp ,
12

1
,

1 exp ,
12

σ
σσ

σ

σ
σσ

σ

I

I

W t F
Ht k Ft t t

FG H
H
W t F
Ht k Ft t t

FG H
H

  (10) 

where 1σ and 2σ being the principal stresses and where during the time interval   0 ,t t t  the 

state of stress is constant and  0
IW t  is calculated at moment 0t , just before of a new stress 

increment σ that occurs at 0t .  

5.2. Comparison of the numerical results with the analytical solution 

The numerical solution is obtained for the same loading path as in the calculation of the 
analytical solution. Since the calculation of the analytical solution uses the hypothesis of an 
instantaneous loading, for the numerical solution the loading is applied in a very small time 
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interval t , namely 1010 s. Similar to the calculation of the analytical solution in the 
hypothesis of a constant stress, for the numerical solution, at every time step, null loading 
increment is applied.  

To perform a comparison between the analytical solution and the numerical results obtained 
using the Euler method (θ  scheme) and Runge-Kutta method of fourth order, we present as 
example, one step loading path, with a null initial state of strain and an initial stress state of 
     0 0 0

1 2 30.7kPa, 0.1kPa, 0.1kPa. The numerical results obtained using Runge-Kutta 
method of fourth order shows the superiority of this method. 

For instance, in the case of t  = 0.01 s, the analytical solution for the strain components 
gives: 

     -6 -7 -7
1 2 3=  3.08839  10 ,  =-7.99371  10 , =-7.99371 10 ;analytic analytic analytic  

while the same components using θ  scheme are: 

     -6 -7 -7
1 2 3=  3.08841  10 ,  =-7.99383  10 ,  =-7.99383  10 ;Euler Euler Euler  

and using Runge-Kutta of fourth order methods, are: 

       -6 -7 -7
1 2 3=  3.08840  10 ,  =-7.99378  10 ,  =-7.99378  10 .R K R K R K  

6. Comparison of the numerical solution of the triaxial test boundary 
problem and the experimental data 

The numerical solution is performed using the elasto-viscoplastic constitutive law presented 
above and represents the triaxial test for a cylindrical sample of saturated sand
    1 2 3increasing,  under axi-symmetric hypothesis, see [20].  

A quarter of a sample was considered because of the symmetries, requiring only one 
quadrilateral finite element with 8 nodal points. So, the mesh is a very simple one, like in 
Figure 1, the width being denoted with a and the length l. In this case, we consider a = l = 1. 

(0,1)

(0,.5)

(0,0)

1 2 3

4 5

6 7 8

(.5,0) (1,0)

(1,.5)

(1,1)
(.5,1)

 
Figure 1. The mesh for the simulation of the triaxial test for a cylindrical sample 
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The stress state in element being uniform, the 8 nodal points of the element present the same 
state of stress and strain. For validation we deal only with 8th nodal point element, which has 
the advantage that since its height being equal with unity, its vertical displacement is equal 
with the longitudinal strain, and its horizontal displacement is equal with the radial strain. 

The initial boundary problem is then: 

     
     
     
     

       
       
        
        

inner face 0 and 0, 0, 0, 0.

left lateral surface 0, and 0 0, 0, 0.

right lateral surface 0, and ( ), 0, 0.

outer face and 0, ( ), 0, 0.

r rz

r rz

rr rz

zz rz

z r a u t t t

z l r u t t t

z l r a t f t t t

z l r a t g t t t

  

We consider for the functions f and g some particular forms that can simulate the triaxial test 
in two stages, namely: 

- the hydrostatic stage when both lateral pressure and the vertical one are increased (in 
steps for this test) until a certain value is reached. 

- the deviatoric stage, when the lateral pressure remains constant at while the vertical one 
is increased (in steps as well) until failure. 

The following functions are used for the two stages: 

 

 


   
  


           

for 0 (the hydrostatic stage)

for (the deviatoric stage)

for 0 (the hydrostatic stage)

for (the deviatoric stage)

h

h

h

h h

t t T
f t T

T t

t t T
Tg t

t T T t

 

with a linear variation during the hydrostatic stage.  ,h ,T are constants that characterize 
the loading. 

We are going to consider as well a quadratic variation with respect to the time of the loading 
through the functions: 

 

 


     

  


  
  

        

2

2

2

2

2

for 0 (the hydrostatic stage)

for (the deviatoric stage)

for 0 (the hydrostatic stage)

for (the deviatoric stage)

h

h

h

h h

t t Tf t T
T t

t t T
Tg t

t T T t
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Let us consider now a hydrostatic stage of a classical triaxial test (we consider for the 
functions f, g, f', g' the upper branch of the function form defined above). We will try to find 
again some of the important constitutive features of the material with the numerical 
solution. 

The comparison of the results for a linear incremental in time loading (considering the 
functions f, respective g) and a quadratic incremental in time loading (considering the 
functions f', respective g') are made for two different duration of creep time step, 10s and 
30s respectively. In both cases, the volumetric strain corresponding to the quadratic loading 
is bigger than in the case of the linear one in time, the difference being more marked at 
smaller loading rates. 

A comparison with respect to the loading rates for 7 loading steps, and 14 loading steps 
hydrostatic test respectively is made too. In both cases one can observe grater strains in the 
case of smaller loading rates, the strains being as great as the test performed with more 
loading steps. 

For the deviatoric stage of the classical triaxial test (the lower branches of the functions f, 
g, f', g') in which the stress state that was reached in the hydrostatic stage is maintained 
constant and only the vertical component of the stress is increased, a comparison 
between the numerical results and the experimental data is achieved for saturated sand 
(see [22]). 

There are two sets of tests with the confining pressure of 14.7 kPa and 29.4 kPa respectively. 
Figures 2a,b represents the experimental data, while Figures 3 a, b presents the numerical 
results for the two tests mentioned above, respectively. 

 

     

 
 
Figure 2. a), b). Experimental data for 2 tests with confining pressure of 14.7 kPa , 29.4 kPa respectively 

(a) (b)
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Figure 3. a), b). Numerical solutions for 2 tests with confining pressure of 14.7 kPa,29.4 kPa, 
respectively 

7. Comparison of numerical and analytical solution for underground 
openings    

In this paragraph, a comparison between the numerical results and an available analytical 
solution for the problem of underground openings in viscoplastic rock mass is performed 
and it represents the next step of validation of the numerical code. The approach 
presented here concerns the applications of supported and unsupported underground 
openings in viscoplastic rock mass with the assumption of constant primary stress in the 
whole domain. 

7.1. Problem formulation                     

The proposed boundary problem is as follows: it is assumed that the rock mass is an 
infinite body in which circular opening is made. Therefore only plane strain condition is 
considered. 

Assuming further that the underground opening is at a certain depth where the horizontal 
and vertical components of the primary (initial) stress h and v are known and, generally, 
distinct. It is also assumed that in the neighbourhood of the opening these components are 
constant and equal with their corresponding value for the opening axis depth. The influence 
of the ground surface is neglected, so that the opening is imagined as a cylindrical cavity of 
infinite length, excavated in an infinite space. 

Cylindrical coordinate system is chosen for convenience with axis Oz being the symmetry 
axis of the opening (Figure 4). 

(a) (b)
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Figure 4. The domain of the boundary value problem 

A pressure loading p(t) is considered on the surface r = a of the opening, that could be due to 
different causes. Therefore, the boundary conditions are: 

 
     


: , 0,
any

S S
rr r

r a
p

z  
      


/ /: , ,
any

S S
xx h yy v

r
z

  (11) 

with Ox and Oy the horizontal and the vertical axis respectively. 

The conditions (9) can be written in the cylindrical coordinates as follows (see [1]): 

   
   
 



  

  

           

           

        

1 1
/ 2 2

1 1
/ 2 2

1
/ 2

cos2 ,

cos2 ,

sin 2 .

S P
rr rr h v h v
S P

h v h v
S P
r r h v

 

The superscripts S, P, R mean the secondary, primary and relative components of the stress, 
displacement and strain respectively. 

Further, the fundamental equations of the problem are presented. 

The equilibrium equations written in the relative components are: 

 

   



     
   

  
   

   
  
   

   
  

1 0;

1 2 0;

1 0.

rr r rz rr

z

r z r

z

rz z zz rz

z

r r r

r r r

r r r

 

The components of the small strains: 
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   
         

  
     

      
                

θ θ
θ

θ θ
θθ θ zz

rr r

z

1 1, ;
2

1 ;
2
1 1 1, , .

2

r r

r z z

r z
rz

u u u u
r r r r

u u
z r

u u u u u
r r r z z

 

and the compatibility equations in cylindrical coordinates has to be added, as well:  

   

 

   


      
   

   

        
     

      
     

  
   
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Due to the plane strain hypothesis, we have 
 


0 , 0 ,R

zu
z

and then, according to the 

components of the small strains, zero values are founded for the relative strains 

      0 .R R R
zz rz z  

A viscoplastic constitutive equation as presented in the previous paragraph is considered. 

7.2. Analytical solution                       

It is assumed that the opening (or only a part of it) is excavated in a very short time interval 
  00,t t and then it is exploited in a much longer time interval   0 1,t t t . It is also assumed 

that during the first time interval the response of the rock is "instantaneous" and during the 
second one different time effects are possible, such as: creep and a slow variation in time of 
stress. 

Consequently, if the tunnel is excavated at 0t , then immediately after excavation, the stress, 
the strain and the displacement of the rock are given by the elastic solution. Concerning the 
second interval  0 1,t t  a possible solution will be present, obtained under a number of 
assumptions that would simplify a lot the analytical solution thus making it amenable to 
analysis.  
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The main hypothesis is that the same distribution of stresses for the elasto-viscoplastic 
model is assumed as in the elastic model: by considering that in the interval  0 1,t t  the 
stress components    , ,rr r remain constant and equal with those given by the elastic 
solution (see [1]). 

Due to the fact of the plane strain hypothesis   0R
zz  it has to be accepted that zz varies 

during this interval and therefore it satisfies the differential equation: 

   
            

1 1 1 1 .
3 3

I

zz
zz

W Fk
K G H

 

This differential equation may be integrated numerically using the initial conditions
  zz h . It was found that a very small variation in time (negligible) ofzz was exhibited 
and a very fast stabilization of this variation. Therefore, it can be assumed that all stress 
components could be constant during the rock creep around the opening. 

In order to arrive at the expression that describes the creep strain, the equation (7) that 
supplies the variation of  IW t when all stress components are constant is used.  

The time taken for  IW t to reach the asymptotic value depends mainly on the value of the 
constitutive parameter k, the viscosity. A reasonable correct value for k can be obtained only 
observing the convergence of a tunnel wall in time. 

Then one can obtain, similarly as in the previous paragraph, the formulae (10) for the strain 
variation by integrating the constitutive equation (4) taking into account (7) and using the 
initial conditions (9). 

In the case of   h v  one can deduce a formula for the wall opening convergence as: 

   

  
                  



 




0
0

1
,

1 exp
1

IP

R

W F
H k Fu u t t r

F H
H

with R   0.u   

 
Figure 5. Domain used in numerical formulation        
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7.3. The numerical solution              

In the case of numerical approach, the domain to be discretized and the boundary 
conditions, see Figure 5 and the FEM mesh, see Figure 6, are: 

 
Figure 6. FEM mesh 

In this case a quarter of the domain needs to be considered as the principal components of 
the primary stress h and v are assumed constant over the entire domain. 

For this problem a mesh of 6 nodded triangles was used. The presence of the lining is 
simulated either by an internal pressure acting on the tunnel walls or by introducing some 
elements (8 nodded  quadrilaterals) in contact with the tunnel walls, with the mechanical 
characteristics of the lining material (Figure 6).  

In the following examples the lining was considered made of concrete with Young modulus 
E = 200000 kPa and Poisson coefficient   = 0.3. 

There were considered the cases when h = v = 2000 kPa and the case   h v , namely h = 
1500 kPa and v = 2000 kPa. The tunnel radius is 1 m. 

It is well known that the choice of the time step is quite important in viscoplasticity 
problems. This choice must be correlated with the viscosity parameter k as well, so that the 
value of k dt to ensure a good convergence of the numerical scheme. 

In the model under consideration of saturated sand it was observed that values for k t
which exceeds the magnitude order of 310 produce a divergence of the numeric calculation 
with the present method (the initial stress method and the initial stress method combined 
with different methods of acceleration). So, some stronger methods have to be implemented, 
in order to offer a faster convergence of the numerical calculus, e.g. the method of consistent 
tangential operator, backward Euler method, etc.). 
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The next Figures present other aspects of the numerical solution both in the case of an 
internal pressure acting on the tunnel wall, and for the case of concrete lining, that cannot be 
represented by the analytical solution. 

7.3.1. Numerical solution for the case of internal pressure acting on the tunnel wall 

The following Figures represents the numerical solution for the case of a tunnel subjected to 
a hydrostatic primary stress ofh = v = 2000 kPa and an internal pressure on the tunnel 
walls p = 1000 kPa which simulates the lining.   

Figures 7a and 7b represent the evolution of the Euclidian norm of the viscoplastic strain 

ij
vp  for the first time step and after 130 time steps with one time step 10000 s, respectively.  

 
 

 
 

Figure 7. a), b). Contours of ij
vp evolution of tunnel with an internal pressure in the case of a 

hydrostatic primary stress after the first time step and after the 130th time step, respectively 

A tunnel driven in a rock mass with a non-hydrostatic primary stress of h = 1500 kPa and
v = 2000 kPa, exhibits for instance, a development of a viscoplastic zone in the tunnel wall 

that increases from 1.13E-4 for ij
vp after the first time step Figure 8 to 5.13E-3 for ij

vp after 

130 time steps.  

The radial stress component rr presents a very slow variation in time and it is presented in 
Figure 9. 

(a) (b)
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Figure 8. Contours of ij
vp after the first time step         

 

 
 

Figure 9. Contours of rr after the first time step 

For the same boundary problem the evolution of the hoop stress  is designed in Figures 
10a for the first time step and 10b for the 130th time step. 
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Figure 10. a) Contours  after the first time step, b) Contours  after the 130th time step 

7.3.2. Numerical solution for the case concrete lining 

In this subparagraph, the numerical solution for a concrete lining as a distinct material and 
mesh elements group is presented. 

For a case of a lined tunnel by a concrete lining with Young modulus E = 200000 kPa and 
Poisson coefficient   = 0.3 for the same type of rock mass subjected to a primary stress of h

= 1500 kPa and v = 2000 kPa the diagrams of variation are presented as follows: the total 

displacement  2 2
total x yu u u in Figures 11a and 11b, and the norm of the viscoplastic strain

ij
vp  in Figures 12a and 12b respectively. 

The evolution of the equivalent stress  and hoop stress   is also studied. Both in the case 
of the equivalent stress and of the hoop stress  , an increasing of the smaller value zone 
from the roof, and a decreasing of the big value zone from the tunnel wall are observed. 

(a) (b)
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Figure 11. a), b) Contours of totalu evolution in a supported tunnel excavated in a rock mass with non-

hydrostatic primary stress, after the first time step and after 130th time step, respectively 

 

 
 

Figure 12. a), b) Contours of ij
vp evolution in a supported tunnel excavated in a rock mass with non-

hydrostatic primary stress, after the first time step and after the130th time step, respectively 

(a) (b)

(a) (b)
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7.4. Comparisons between the numerical and analytical solutions    

Although the analytical solution was obtained under the assumptions of constant stress 
during the creep, it represents a good benchmark for the numerical calculation, supplying 
important information  both  quantitatively  and qualitatively.  

On the other hand, the numerical solution introduces certain truncation due to its 
discretisation errors. Nevertheless, the comparison between the two solutions could lead to 
some constructive conclusions for both solutions. 

In Figure 13a the variation with respect to the distance in radial direction of the radial 
displacement in a tunnel excavated in  condition  of primary stress h = v = 2000 kPa, with 
an internal pressure on  the  tunnel wall p = 1000 kPa, at a chosen time, namely after 5  time  
steps ( one  time step is considered 10000 ) is presented. A good agreement in the 
neighbourhood of the opening is observed, then the two solutions begin to differ, taking 
into account on one hand the assumptions of constant stress for the analytical solution and 
on the other hand the errors accumulated during the numerical process, due to the course 
mash at great distance. Figure 4b represents a comparison between the two displacements at 
two locations (the polar radius r = a and the polar angle   = 0) at tunnel boundary, under 
the same condition as above, but with respect to time. One can observe that for small 
numbers of time steps, the numerical solution is superior, but for larger number of time 
steps (i.e. more than 10 time steps), the analytical solution becomes larger. 

 
Figure 13.  a), b). Tunnel outline total displacement with respect to distance and time, respectively, for 
the numerical and analytical solutions  

In the case of the viscoplastic strain, the analytical solution predicts greater values than the 
numerical one, even from the beginning of time analysis. That can be observed in Figure 14, 
for the case of a tunnel excavated in a rock mass with a non-hydrostatic primary stress ofh
= 1500 kPa, v  = 2000 kPa, and the internal pressure p = 1000 kPa. 

(a) (b)
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Figure 14.  The time evolution of viscoplastic strain of tunnel walls for numerical and analytical 
solutions 

7.5. Final remarks                            

Concerning the analytical solution for the problem under consideration the main remark is that 
it is difficult to obtain the analytical solution and it can be obtained using some (apparently) 
severe assumptions such as the same stress distribution is used for linear elastic and elasto-
viscoplastic condition and has to be invariant in time. On contrary, the numerical solution via 
Finite Element does not impose such restriction and the results are exhibiting a much slower 
variation with time during creep. Thus this could attenuate the severity of the assumption of the 
analytical solution, assumption that could not be considered totally unrealistic.  

Since the analytical solution is the exact solution of the governing equations under some 
restrictions, it can be used to benchmark the FE analysis before putting it in general 
applications. 

Some remarks can also be drawn taking into account the features exhibited by the numerical 
solution. 

Comparison between the numerical solutions obtained in the case of hydrostatic and 
nonhydrostatic primary stress respectively, shows that a much greater increase in time for 
the viscoplastic strain in the nonhydrostatic case, and a larger zone in the rock mass is 
exhibiting viscoplastic behaviour too. 

A very slower decrease in time of the radial stress is observed, while the hoop stress has a 
tendency to increase in time.  

In a more realistic case of the lining being simulated as a distinct zone of material with 
specific mechanical characteristics (concrete in the cases under consideration), instead of 
being applied as an internal pressure on the tunnel walls, some remarks could be made too. 
With the concrete lining modelled as elements, the displacement is greatly reduced and the 
viscoplastic strain is much less than the case of the internal pressure being applied on the 
tunnel walls. The amount accumulated in time is 5 times smaller than the other ones. 
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All these features are in good accordance with the practical observation, so, more involved 
boundary problems could be envisaged to be solved with this code. 

8. Numerical solution of the three phases tunnel excavation and lining 
mounting problem 

A finite element solution for the problem of a circular tunnel excavated in a homogeneous 
isotropic elasto-viscoplastic rock mass is presented. The numerical model consists of the 
successive phases of the excavation and support mounting, emphasizing the role of two 
important factors of the analysis, namely the time and the tunnel face influence and taking 
into account the 3D aspect of the problem. 

The behavior of rock mass is considered viscoplastic, while the concrete lining is elastic. A 
possible behavior of sliding at the rock-support interface, which requests some additional 
contact elements of the mesh, is neglected. The rock mass is homogeneous, for the simplicity 
of data input, though introducing another rock/soil layer, with different mechanical 
characteristics represents no difficulty. 

It is convenient to lead calculation to a 2D, plane strain or axisymmetrical, if it is possible, 
since it is less costly in data input and running time than a 3D analysis. 

8.1. Formulation of the problem 

Let us consider the following boundary problem: the rock mass is an infinite body in which 
a circular opening is made, assuming then that the underground opening is at a certain 
depth characterized by a hydrostatic primary (initial) stress, σP PI where P = h, h is the 
depth at which the tunnel is dug,  is the specific gravity of the rock and   is the unity 
tensor.  

As the tunnel possesses a circular geometry, the rock-mass and the lining mechanical 
properties do not depend on the angular coordinate  and the far stress field in situ is 
hydrostatic (primary stress components v , h are assumed equal), the problem is an 
axisymmetrical one in Orz plane (Figure 15). 

Consequently, the primary stress componentsv , h are assumed equal. The boundary 
conditions are: 

     On . . [ , ] and : and 0.AB i e z z z r a prr rzA B   

     On . . [ , ]and : 0 and  0.B C rr rzBC i e z z z r a  
      On . . and [0, ] : 0 and 0.C D rr rzCD i e z z z r a  
    On . . [ , ] and 0 : 0 and 0.D E r rzDE i e z z z r u   
       On . . and [0, ] : and 0.E F F zz v rzEF i e z z z r r  
       On . . and : and 0.F G F rr v rzFG i e z z z r r       
      On . . and [ , ] : and 0.A A G zz v rzGA i e z z r r r       



 
Finite Element Analysis for the Problem of Tunnel Excavation Successive Phases and Lining Mounting 325 

 
Figure 15. Domain and boundary conditions for the problem study in Orz plane along the tunnel axis. 

Cristescu's elasto-viscoplastic constitutive law is used for the rock-mass and elastic behavior 
for the concrete lining.  

An important factor of the analysis is the time effect and it is involved by two different 
aspects: the rheological behavior of the rock mass on and the excavation history. Moreover, 
the tunnel support mounting determines a problem of interaction, getting thus a more 
involved calculus. Another important factor of the analysis of ground-support interaction 
during the tunnel excavation is the face tunnel. For instance, since the behavior of the rock-
mass is viscplastic, rock pressure on the lining increases in time. On the other hand, closer 
the lining is installed to the tunnel face, more the pressure at the rock-lining interface 
increases with the advancing of the tunnel face.  

The state of stress and strain around a lined tunnel depends explicitly on: 

- The mechanical and geometrical characteristic of the rock-mass and the support; 
- The excavation conditions, such as excavation rate, generally the excavation phases; 
- The support mounting conditions, namely the support mounting time after the 

excavation and the distance between the lining and the tunnel face. 

Concerning the geometry and the loading, the successive phases of the tunnel excavation 
and support mounting is a three-dimensional problem. However, there are certain cases when 
the problem may be simplified assuming the hypothesis that close to the tunnel face, on the 
tunnel walls, r=a, the decompression of the primary stress component is occurring 
gradually.  

The calculation of tunnel excavation and lining mounting is a complex problem. On one 
hand, the excavation is a three-dimensional problem that imposes taking into consideration 
the tunnel face influence that means a gradual decompression of the primary stress h of the 
rock mass on the opening walls. On the other hand, the support mounting determines the 
problem to be a massive-lining interaction one, mainly based on the behavior of the rock-
lining interaction. 

The lining is often installed quickly enough after the excavation and at a relatively small 
distance from the tunnel face that induces a complex combination of the effects mentioned 
above. 
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Consequently, it is very important to take into consideration both time and tunnel face effect 
in the excavation and lining mounting problem. Essentially in this study is the calculation of 
lining pressure and the convergence of the tunnel walls. 

8.2. The numerical solution of the successive phases tunnel excavation 

The domain discretization of the boundary value problem is presented in Figure 16. As 
usual, in the tunnel surface region the mesh must be quite refine, while elsewhere a 
minimum possible number of elements is considered. It is used an 8 nodded-quadrilateral 
mesh, at least 2 layers of quadrilateral elements in the concrete lining. 

We consider the tunnel radius a = 1.2 m and the lining thickness 0.2 m. The depth at which 
the tunnel is excavated is 273.5 m. One phase duration is 12 hours and respectively 1 day. 

For the rock mass the Borod coal is used, whose material constants were presented 
previously. For the concrete the following material constants are used: Young modulus E = 
20000 MPa, Poisson coefficient = 0.3 and the volumetric weight  = 0.02 MN/m2.  

  
Figure 16. The domain discretization of the boundary value problem.  

It is used a numbering of elements group as they are activated/deactivated in the excavation 
and lining installing processes, as follows: 

- 1st group is the rock-mass considered infinite 
- 2nd group corresponds to the already mounted lining 
- 3rd group is in the first phase the rock-mass that is going to be excavated and in the 

second phase is replaced by the concrete 
- 4th group is in the first phase the rock-mass that is going to be excavated 
- 5th group is in the first two phases the rock-mass that is going to be excavated in the 

third phase and eventually replaced by concrete in a possible fourth phase 
- 6th group is in the first two phases the rock-mass that is going to be excavated in the 

third phase 

Numerical model concerns three successive phases’ tunnel excavation and lining mounting. 
Let us detail the progression of phases of the example:   
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- Phase 1: tunnel excavation and calculation of strain, stress, damage parameter, without 
lining mounting on new excavated zone (Excavation of element group 3 and 4). 
Structure elements corresponding to the support are inactive (null mechanical 
characteristics). Output storage for the following phase (phase 2) is performed as well. 

- Phase 2: lining installing at a certain given time T0, on the unexcavated zone in phase 1. 
Displacement and stress initialization starting from the previous phase output storage 
and output storage for the following phase (phase 3) are performed as well. 

- Phase 3: tunnel face advancing on a distance of unit radius, namely 1.2 m. Realization 
of a new excavation is simulated by inactivation of element group 5 and 6, considering 
null mechanical characteristic. Displacement and stress initialization with the 2nd phase 
state is performed as well. 

In the following, we present some important results of the calculation concerning, for 
instance, the normal stress, the equivalent stress or the damage parameter df.  

In Figures 17a, b, c isovalues zones for the damage parameter corresponding to the three 
phases are presented, respectively. It is observed that in tunnel face zone the damage is 
maximum (white area). 

 
Figure 17. a), b), c) Isovalues zones for damage parameter for the first, second, third phase, respectively 

Isovalues zones for normal stress corresponding to the three phases are presented in Figures 
18a, 18b, 18c. Great concentrations are observed in tunnel face zone (white area). 

Figures 19a, b, c present isovalues zones for equivalent stress corresponding to the three 
phases, observing small tractions in the second, respectively the third phase. That signifies 
the possibility of fracture by exceeding the traction resistance, since it is known that it is 
very low for the rocks. 

(a) (b) (c)
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Figure 18. a), b), c) Isovalues zones for normal stress for the first, second, respectively third phase. 

 
 

 
 

Figure 19. a), b), c). Isovalues zones for equivalent stress the first, second, respectively third phase. 

(a) (b) (c) 

(a) (b) (c)
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8.3. Parametric analysis: Influence of tunnel depth, lining stiffness and lining 
mounting time 

8.3.1. Support rigidity influence 

The numerical solution is used to analyze the influence of different parameters that 
intervene in the excavation process. In this chapter we present the influence of lining 
rigidity and depth at which the tunnel is excavated.  

The conclusion is that the displacement and the damage through dilatancy, as it was 
incorporated in the constitutive law, are decreasing with the increasing of the lining rigidity 
and increasing with depth increasing. In this paragraph we exhibit these features of the 
solution by several Figures and observations.   

The support rigidity can be calculated by the following formula [1], [20]:  

 



      

2 2

2 2

( )
(1 ) 1 2

E b cq
b c

 

The previous calculation was performed for a value of Young modulus E=20000 Mpa, 
Poisson coefficient  = 0.3, external radius b = 1.2 m and internal radius c = 1 m. We perform 
the calculation for E=2500 Mpa, too. Figures 20a, b present the isovalues zones of damage 
parameter d defined in relation (2) and show that the dilatancy, as it was incorporated in the 
constitutive law, is decreasing with the increasing of the lining rigidity. The same results are 
obtained by author by analytical means in [20], [18]. 

 
Figure 20. a), b). Isovalues zones for damage parameter for E=2500 Mpa, E=20000 Mpa, respectively 

(a) (b)
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Figure 21. a), b), c). Isovalues zones of dilatancy for tunnel depth of 150 m, 273.5 m, 850 m, respectively  

 
Figure 22. a), b). Isovalues zones for the normal stress for tunnel depth of 150 m, 850 m, respectively 

8.3.2 Tunnel depth influence 

To analyze the depth influence on the processes we perform the calculation for different 
values of the depth at which the tunnel is excavated. At the previous calculation performed 
initially for a depth of 273.5 m, we add another two calculations for 150 m and 850 m depth 
respectively. The conclusion is that both displacement and damage increase with depth such 

(a) (b) (c) 

(a) (b)
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that: the maximum radial displacement is 6.65 cm at a depth of 150 m, 6.83 cm at a depth of 
273.5 m and 7.31 cm at a depth of 850 m. Concerning the damage, for instance, let us observe 
the Figures 21a, b, c presenting the isovalues zones of the damage parameter for a depth of 
150 m, 273.5 and 850 m, respectively. The damage is more pronounced at a depth of 850 m 
(the white zone is more extended).  

Figures 22a, b present isovalues zones of the normal stress rr for instance, for the same 
depths of 150 m and 850 m, respectively. It is observed that the normal stress decreases with 
the depth increase in compression and consequently, it appears the risk of traction at smaller 
depth, which may induces rock or lining fracture. 

9. Conclusions 

The complex problem of a lined tunnel excavation in a viscoplastic rock mass is approached 
in this chapter both numerically by a FE code proposed by the author and by an analytical 
approach too. A good agreement between the numerical and the analytical solutions is 
obtained. 

Both solutions are studied then for further specific features. All these features are in good 
agrrement with the practical observation, so, more involved boundary problems could be 
developed with this code and further improvements for the analytical solution. 

A special study is devoted to the finite element solution for the simulation of a tunnel 
excavation with successive tunnel face advancing and the lining mounting. Due to the 
symmetry of the geometry and loadings, the problem is treated as an axisymmetrical one 
with an additional emphasis of the three-dimensional aspect of the problem, namely the 
tunnel face advancing and its proximity influence. So, the approach of a tunnel calculation 
in two-dimensional analysis along the tunnel axes, simulating thus the three-dimensional 
aspect of the problem, is more realistic than the classical cross section analysis and obviously 
less costly than an actual three-dimensional analysis. The parametric analysis performed in 
this study by the numerical solution is in good accordance with the results obtained by the 
author by analytical means [19], [20]. 
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1. Introduction 

Tubular hollow sections are increasingly used in off-shore structures, highway bridges, 
pedestrian foot-bridges, large-span roofs and multi-storey buildings due to their excellent 
properties and the associated advances in fabrication technology. The intensive use of 
tubular structural elements in Brazil, such as the example depicted in Figure 1, mainly due 
to its associated aesthetical and structural advantages, led designers to be focused on their 
technologic and design issues. 

Nowadays in Brazil, there is still a lack of code that deals specifically with tubular design. 
This fact induces designers to use other international tubular design codes. Consequently, 
their design methods accuracy plays a fundamental role when economical and safety points 
of view are considered. Additionally, recent tubular joint studies indicate that further 
research is needed, especially for particular geometries. This is even more significant for 
some failure modes where the collapse load predictions lead to unsafe or uneconomical 
solutions. 

Steel and composite tubular footbridges are currently subjected to dynamic actions with 
variable magnitudes due to the pedestrian crossing on the concrete deck [1-4]. These 
dynamic actions can generate the initiation of fractures or even their propagation in the 
structure. Depending on the magnitude and intensity, these adverse effects can compromise 
the structural system response and the reliability which may also lead to a reduction of the 
expected footbridge service life. 

Generally, fatigue assessment procedures are usually based on S-N curves which relate a 
nominal or geometric stress range S to the corresponding number N of load cycles to fatigue 
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failure. In this situation fatigue assessment refers to the nominal stress range Δσ in a tubular 
structural member. 

 
Figure 1. Example of a tubular steel pedestrian footbridge in Rio de Janeiro/RJ, Brazil. 

The fatigue resistance is given according to a classification catalogue in the form of 
standardized S-N curves. Structural details classified in this catalogue, see e.g. Eurocode 3 
Part 1.9 [5], correspond specifically to a situation of stress range, direction, crack position, 
detail dimension and weld quality which had been characteristic for the tests on which the 
classification is based [6-7]. 

The use of circular hollow section members as part of the structure of pedestrian footbridges 
is a relatively new constructional concept. During the last couple years several steel-concrete 
composite footbridges had been constructed in Brazil, as illustrated in Figure 1. 

The typical cross-section of this type of pedestrian footbridge generally consists of a tubular 
spatial truss girder carrying the concrete deck slab, as presented in Figure 1. The deck slab is 
connected directly to the steel structure by either shear studs, concrete dowels or in some 
cases where no top chord exists. At the bottom chord of the tubular space truss four brace 
members have to be connected to the continuous bottom chord. This type of joint is usually 
named K-joint, as depicted in Figure 2 [6]. 

Steel and composite tubular footbridges can be subjected to the material imperfections of its 
structural elements, such as mechanical and metallurgic discontinuities. Such defects lead to 
cracking in the-se structural elements. When these elements are subjected to dynamic 
actions, the fatigue phenomenon occurs and produces stress concentrations and possible 
fractures. These fractures are directly responsible for reducing the local or global footbridge 
stabilities or even its life service [7]. 



 
Finite Element Modelling of the Dynamic Behaviour of Tubular Footbridges 335 

On the other hand, the structural engineers experience and knowledge allied by the use 
newly developed materials and technologies have produced tubular steel and composite 
(steel-concrete) footbridges with daring structures. This fact have generated very slender 
tubular steel and composite pedestrian footbridges and consequently changed the 
serviceability and ultimate limit states associated to their design. A direct consequence of 
this design trend is a considerable increase of structural vibrations [1-4, 8-11]. 

 
Figure 2. Typical multiplanar K-joint with notations. 

Considering all aspects mentioned before, the main objective of this investigation is to 
present the finite element modelling of the dynamic behaviour of tubular composite (steel-
concrete) footbridges submitted to human walking vibration. Based on the results obtained 
in this study, a fatigue assessment will be performed, in order to evaluate the tubular 
footbridges service life. Further research in this area is currently being carried out. 

The investigated structural model was based on a tubular composite (steel-concrete) 
footbridge, spanning 82.5 m. The structure is composed by three spans (32.5 m, 17.5 m and 
20.0 m, respectively) and two overhangs (7.50 m and 5.0 m, respectively). The structural 
system consists of tubular steel sections and a concrete slab and is currently used for 
pedestrian crossing [1-2]. 

The proposed computational model adopted the usual mesh refinement techniques present 
in finite element method simulations, based on the ANSYS program [13]. The finite element 
model has been developed and validated with the experimental results. This numerical 
model enabled a complete dynamic evaluation of the investigated tubular footbridge 
especially in terms of human comfort and its associated vibration serviceability limit states. 
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This investigation is carried out based on correlations between the experimental results related 
to the footbridge dynamic response and those obtained with finite element models [1-2]. The 
structural system dynamic response, in terms of peak accelerations, was obtained and 
compared to the limiting values proposed by several authors and design standards [9,14]. 

The peak acceleration values found in the present investigation indicated that the analysed 
tubular footbridge presented problems related with human comfort. Hence it was detected 
that this type of structure can reach high vibration levels that can compromise the 
footbridge user’s comfort and especially its safety. 

2. Human walking modelling 

Human loads comprise a large portion of the acting live loads in offices and residential 
building floors. In general, the human live loads are classified into two broad categories: in 
situ and moving. Periodic jumping due to music, sudden standing of a crowd, and random 
in-place movements are examples of in situ activities. Walking, marching, and running are 
examples of moving activities. As the main purpose of footbridges is the pedestrian’s 
crossing, they must be safe and do not cause discomfort to users [1-4]. 

On the other hand, human activities produce dynamic forces and their associate vibration 
levels should not disturb or alarm their users. Therefore, this investigation describes four 
different load models developed to incorporate the dynamic effects induced by people 
walking on the footbridges dynamic response. It must be emphasized that the geometry of 
the human body walking is an organized leg motion that cause an ascent and descending 
movement of the effective body mass at each step [1-4]. 

The human body mass accelerations are associated to floor reactions, and are approximately 
periodic to the step frequency. The two feet produce this type of load, as function of the 
static parcel associated to the individual weight and three or four harmonic load 
components. These harmonics appear due to the interaction between the increasing loads, 
represented by one foot, and the simultaneous unload of the other foot [1-4]. 

However, it is also necessary to incorporate several other parameters in the human walking 
representation, like step distance and speed. These variables are related to the step 
frequency and are depicted in Table 1 [12]. Table 1 presents a detailed description of the 
excitation frequency values, dynamic coefficients, as well as the phase angles to be 
employed in the mathematical representation of the four dynamic loading models 
implemented and used in the present investigation. 

 
Activity Velocity (m/s) Step Distance (m) Step Frequency (Hz) 

Slow Walking 1.1 0.60 1.7 
Normal Walking 1.5 0.75 2.0 

Fast Walking 2.2 1.00 2.3 

Table 1. Characteristics of the human walking [12]. 
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2.1. Load model I (LM-I) 

This walking load model can be represented by the load static parcel, related to the 
individual weight, and a combination of harmonic forces whose frequencies are multiples or 
harmonics of the basic frequency of the force repetition, e.g. step frequency, fs, for human 
activities. This load model considers a space and temporal variation of the dynamic action 
over the structure and the time-dependent repeated force can be represented by the Fourier 
series, see Equation (1). 

      ( ) [1 cos 2 ]i s iF t P i f t  (1) 

Where: 
F(t) : dynamic load; 
P : person’s weight (800 N [1-4]); 
αi : dynamic coefficient for the harmonic force; 
i : harmonic multiple (i = 1,2,3…,n); 
fs : walking step frequency; 
 : harmonic phase angle; 
t : time. 

In this load model, five harmonics were considered to represent the dynamic load associated 
to human walking [12]. Table 2 shows the dynamic coefficients and phase angles used in 
this load model. Figure 3 presents a dynamic loading function for one person walking with 
step frequency equal to 2 Hz. 
 

Harmonic i Dynamic Coefficients αi Phase Angles φi 
1 0.37 0
2 0.10 π/2
3 0.12 π/2
4 0.04 π/2
5 0.08 π/2

Table 2. Dynamic coefficients and phase angles [12]. 

 
Figure 3. LM-I: dynamic load function for one person walking (fs = 2.0 Hz). 
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2.2. Load model II (LM-II) 

In this load model, the time-dependent repeated force also can be represented by the Fourier 
series, as expressed in Equation (1) and four harmonics were considered to represent the 
dynamic action associated to human walking [9]. This model also considers a space and 
temporal variation of the dynamic action over the structural system. Table 3 shows the 
dynamic coefficients and phase angles used in this model. Figure 4 presents a dynamic 
loading function for one person walking with step frequency equal to 2 Hz. 
 

Harmonic i Dynamic Coefficients αi Phase Angles φi 
1 0.50 0
2 0.20 π/2
3 0.10 π
4 0.05 3π/2 

Table 3. Dynamic coefficients and phase angles [9]. 

 
Figure 4. LM-II: dynamic load function for one person walking (fs = 2.0 Hz). 

2.3. Load model III (LM-III) 

In this case a general expression is used to represent the excitation produced by an 
individual walking throughout time. These loads are produced with both feet, as function of 
a static part associated to the individual weight and three harmonics were considered to 
represent the dynamic action related to human walking [15], as illustrated in Equation (2). 
This dynamic loading model considers a space and temporal variation of the dynamic action 
over the footbridge. 

 F(t) = P + P1 sin (2 fs t - φ1) + P2 sin (4 fs t - φ2) + P3 sin (6 fs t - 3)  (2) 

Where: 
F(t) : dynamic load; 
P : person’s weight (800 [1-4]); 
fs : walking step frequency; 
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i : harmonic phase angle; 
t : time. 

In Equation (2), the magnitudes ΔP1, ΔP2 and ΔP3 are associated with harmonic 
amplitudes. The first harmonic amplitude, ΔP1, is equal to 0.4P for fs equal to 2.0 Hz and 
0.5P for fs equal to 2.4Hz. A simple interpolation between these two values can be used in 
intermediate cases. The second and third harmonic amplitudes, ΔP2 e ΔP3, were assumed to 
be equal to 0.1P for fs equal to 2.0Hz [15]. 

The phase angles φ2 and φ3 depend on various other factors and should represent the most 
favourable used load combinations. In the present study the phase angles φ2 and φ3 were 
assumed to be equal to π/2 and phase angle φ1 was assumed to be equal to zero [15]. Figure 
5 presents a dynamic loading function for one person walking with step frequency equal to 
2 Hz. 

 
Figure 5. LM-III: dynamic load function for one person walking (fs = 2.0 Hz). 

2.4. Load model IV (LM-IV) 

The fourth walking load model considered the same idea of the previous models. The main 
difference was the incorporation of the human heel effect in this particular load 
representation with the aid of Equations (3) to (6). The mathematical model behind this 
strategy was proposed by Varela [8] as well as a numerical approach to evaluate the floor 
structure reaction, as presented in Figure 6. 

The proposed mathematical model, see Equations (3) to (6), used to represent the dynamic 
actions produced by people walking on floor slabs is not simply a Fourier series. This is due 
to the fact that the mentioned equations also incorporate the heel impact effect [8]. This 
loading model also considers a space and temporal variation of the dynamic action over the 
structure and is evaluated considering four harmonics. 

Additionally, Load Model IV (LM-IV) also incorporates the transient effect due to the 
human heel impact [8]. The present investigation used a heel impact factor equal to 1.12 (fmi 
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= 1.12). However, it must be emphasized that this value can vary substantially from person-
to-person. Figure 6 illustrates the dynamical load function for an individual walking at 2 Hz, 
based on Equations (3) to (6) and Tables 1 and 3 [9,12]. 

3. Investigated structural model 
The structural model consists of tubular steel sections and a 100 mm concrete slab and is 
currently submitted to human walking loads [1-2]. The structure was based on a tubular 
composite (steel-concrete) footbridge, spanning 82.5 m. The structure is com-posed by three 
spans (32.5 m, 17.5 m and 20.0 m, respectively) and two overhangs (7.50 m and 5.0 m, 
respectively), as illustrated in Figures 7 and 8. 

The steel sections used were welded wide flanges (WWF) made with a 300 MPa yield stress 
steel grade. A Young’s modulus equal to 2.05 x 105 MPa was adopted for the tubular 
footbridge steel beams and columns. The concrete slab has a 20 MPa specified compression 
strength and a 2.13 x 104 MPa Young’s Modulus. 
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Where: 
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Fm : maximum Fourier series value, given by Equation (4); 
fmi : human heel impact factor;  
Tp : step period;  
fs : step frequency;  
i : harmonic phase angle;  
P : person’s weight;  
αi : dynamic coefficient for the harmonic force;  
i : harmonic multiple (i = 1,2,3…,n);  
t : time; 
C1, C2 : coefficients given by Equations (5) and (6). 

4. Finite element model 

The developed computational model adopted the usual mesh refinement techniques present 
in finite element method simulations, based on the ANSYS program [13]. The finite element 
model has been developed and validated with the experimental results [1-2]. This numerical 
model enabled a complete dynamic evaluation of the investigated tubular footbridge 
especially in terms of human comfort and its associated vibration serviceability limit states, 
see Figure 9. In this model, all steel tubular sections were represented by three-dimensional 
beam elements (PIPE16 and BEAM44) with tension, compression, torsion and bending 
capabilities. These elements have six degrees of freedom at each node: translations in the 
nodal x, y, and z directions and rotations about x, y, and z axes, see Figure 9. 

 
Figure 6. LM-IV: dynamic load function for one person walking (fp = 2.0 Hz). 

On the other hand, the reinforced concrete slab was represented by shell finite elements 
(SHELL63), as presented in Figure 9. This finite element has both bending and membrane 
capabilities. Both in-plane and normal loads are permitted. The element has six degrees of 
freedom at each node: translations in the nodal x, y, and z directions and rotations about the 
nodal x, y, and z axes. 
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Figure 7. Investigated steel-concrete composite tubular footbridge. 

 
Figure 8. Internal section of the investigated structural model. 

The footbridge pier bearings were represented by a non-linear rotational spring element 
(COMBIN39). This element is a unidirectional element with non-linear generalized force-
deflection capability that can be used in any analysis. 

The finite element model presented 71540 degrees of freedom, 11938 nodes and 15280 finite 
elements (BEAM44: 1056; PIPE16: 5642; SHELL63: 8580 and COMBIN39: 8), as presented in 
Figure 9. It was considered that both structural elements (steel tubular sections and concrete 
slab) have total interaction with an elastic behaviour. 

5. Dynamic analysis 

Initially, the steel-concrete composite tubular footbridge natural frequencies, vibration 
modes and peak accelerations were determined based on experimental tests [2]. The peak 
acceleration values were obtained considering three types of human walking: slow walking, 
regular walking and fast walking. 
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Figure 9. Tubular footbridge finite element model 

In a second phase, the steel-concrete composite tubular footbridge natural frequencies 
vibration modes and peak accelerations were determined with the aid of the numerical 
simulations [1], based on the finite element method using the ANSYS program [13]. 

5.1. Natural frequencies and vibration modes 

It can be clearly noticed that there is a very good agreement between the structural model 
natural frequency values calculated using finite element simulations [1] and the 
experimental results [2], see Table 4. Such fact validates the finite element model here 
presented, as well as the results and conclusions obtained throughout this investigation. The 
vibration modes of the tubular footbridge are depicted in Figures 10 to 12. 
 

Tubular Footbridge Natural Frequencies (Hz) f01 f02 f03 

Finite Element Model (see Figure 9) 1.61 2.12 5.39 

Experimental Results 1.56 2.34 5.08 

Error (%) 3.20 9.40 6.10 

Table 4. Tubular footbridge natural frequencies. 

When the tubular footbridge freely vibrates in a particular mode, it moves up and down 
with a certain configuration or mode shape. Each footbridge natural frequency has an 
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associated mode shape. It was verified that longitudinal amplitudes were predominant in 
the fundamental vibration mode (f01 = 1.61 Hz), related with Z axis direction, see Figure 10. 
In the second mode shape lateral displacements were predominant (f02 = 2.12 Hz), associated 
with X axis direction, as presented in Figure 11. On the other hand, in the third vibration 
mode (f03 = 5.39 Hz), the flexural effects were predominant, related to vertical amplitudes in 
the Y axis direction, as illustrated in Figure 12. 

 
 
 

 
Figure 10. Vibration mode associated with the 1st footbridge natural frequency (f01=1.61 Hz). 

 
 
 

 
Figure 11. Vibration mode associated with the 2nd footbridge natural frequency (f02=2.12 Hz). 



 
Finite Element Modelling of the Dynamic Behaviour of Tubular Footbridges 345 

 
Figure 12. Vibration mode associated with the 3rd footbridge natural frequency (f03=5.39Hz). 

5.2. Determination of the tubular footbridge peak accelerations 

The finite element modelling follows with the evaluation of the footbridge performance in 
terms of vibration serviceability due to dynamic forces induced by people walking. The first 
step of this investigation concerned in the determination of the tubular footbridge peak 
accelerations, based on a linear time-domain dynamic analysis. 

The dynamic loading models (see Equations (1) to (6) and Figures 3 to 6), related to one, two 
and three people crossing the tubular footbridge on the concrete slab centre, in normal 
walking, see Figures 13 to 15, were applied on the investigated footbridge over 55.0 s. 

The maximum accelerations (peak accelerations) were obtained utilizing an integration time 
step of 2x10-3 s (Δt = 2x10-3 s). In this investigation, seven sections of the structural model 
were analysed, see Figure 16. These maximum accelerations were compared to the limits 
recommended by design codes [9,14]. The structural damping coefficient adopted in this 
investigation was equal to 0.01 (ζ=1%), in accordance with the measured experimental 
damping [2]. 

 
Figure 13. One person walking on the footbridge (regular walking). 

 
Figure 14. Two people walking on the footbridge (regular walking). 
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Figure 15. Three people walking on the footbridge (regular walking). 

 
Figure 16. Tubular composite (steel-concrete) footbridge investigated sections. 

In sequence, Figures 17 to 20 illustrate the tubular footbridge dynamic response, along the 
time, related to the section B (see Figure 16), when one pedestrian crosses the footbridge in 
regular walking (resonance condition). 

 
 

 
 
Figure 17. LM-I: tubular footbridge acceleration response at section B. One pedestrian crossing the 
concrete slab centre at resonance condition. Normal walking. 
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Figure 18. LM-II: tubular footbridge acceleration response at section B. One pedestrian crossing the 
concrete slab centre at resonance condition. Normal walking. 

 
Figure 19. LM-III: tubular footbridge acceleration response at section B. One pedestrian crossing the 
concrete slab centre at resonance condition. Normal walking. 
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Figure 20. LM-IV: tubular footbridge acceleration response at section B. One pedestrian crossing the 
concrete slab centre at resonance condition. Normal walking. 

Figures 17 to 20 present the vertical acceleration versus time graph for the tubular 
footbridge at section B (see Figure 16). These figures show that the vertical acceleration of 
the structure gradually increase along the time. In this particular case, the third harmonic 
with a 2.0 Hz step frequency (fs = 2.0 Hz), was the walking load resonant harmonic. 

The maximum acceleration value found at section B (see Figure 16) was equal to 0.53 m/s2 
(LM-I), 0.58 m/s2 (LM-II), 0.55 m/s2 (LM-III) and 0.44 m/s2 (LM-IV), as illustrated in Figures 
17 to 20. These figures also indicate that from the moment that the pedestrian leaves the 
footbridge span (Section B, see Figure 16), when the time is approximately equal to 26 s, the 
structural damping minimises the dynamic structural model response, as presented in 
Figures 17 to 20. This assertive occurs only in dynamic loading models that consider the 
load spatial variation. 

The peak acceleration analysis was focused on the steel-concrete composite tubular 
footbridge dynamic behaviour when the pedestrian normal walking was considered in this 
work. In sequence, Tables 5 to 7 present the maximum accelerations (peak accelerations: ap 
in m/s2), related to seven structural sections of the investigated footbridge (A, B, B1, B2, C, D 
and E), as illustrated in Figure 16. 

The maximum acceleration values (peak accelerations) found in this investigation are 
respectively equal to 1.50 m/s2 (Section A), 0.18 m/s2 (Section B1), 0.58 m/s2 (Section B), 0.18 
m/s2 (Section B2), 0.58 m/s2 (Section C), 0.43 m/s2 (Section D) and 0.79 m/s2 (Section C), 
corresponding to one individual crossing the composite footbridge in normal walking 
(resonance condition), as illustrated in Figure 13. 
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On the other hand, these maximum acceleration values increases when the normal walking 
associated to two and three people (see Figures 14 and 15) is considered in the analysis, as 
presented in Tables 5 to 7. 
 

Dynamic Loading 
Models 

Tubular Footbridge Peak Accelerations 
(ap in m/s2) 

Limit 
Accelerations 
(alim in m/s2)* Investigated Sections 

A B1 B B2 C D E 

0.49 
Load Model I (LM-I) 1.38 0.17 0.53 0.17 0.53 0.39 0.72 
Load Model I (LM-II) 1.50 0.18 0.58 0.18 0.58 0.43 0.79 
Load Model I (LM-III) 1.38 0.17 0.55 0.17 0.55 0.40 0.74 
Load Model I (LM-IV) 1.00 0.16 0.44 0.16 0.38 0.33 0.78 

*alim = 1.5%g = 0.15 m/s2: indoor footbridges [9,14] 
*alim = 5.0%g = 0.49 m/s2: outdoor footbridges [9,14] 

Table 5. Structural model peak accelerations corresponding to one individual walking. 

 

Dynamic Loading 
Models 

Tubular Footbridge Peak Accelerations 
(ap in m/s2) 

Limit 
Accelerations 
(alim in m/s2)* Investigated Sections 

A B1 B B2 C D E 

0.49 
Load Model I (LM-I) 2.14 0.19 0.74 0.19 0.72 0.61 1.23 
Load Model I (LM-II) 2.32 0.21 0.81 0.21 0.80 0.67 1.35 
Load Model I (LM-III) 2.14 0.20 0.76 0.19 0.75 0.63 1.27 
Load Model I (LM-IV) 1.87 0.21 0.57 0.22 0.58 0.55 1.36 

*alim = 1.5%g = 0.15 m/s2: indoor footbridges [9,14] 
*alim = 5.0%g = 0.49 m/s2: outdoor footbridges [9,14] 

Table 6. Structural model peak accelerations corresponding to two people walking. 

 

Dynamic Loading 
Models 

Tubular Footbridge Peak Accelerations 
(ap in m/s2) 

Limit 
Accelerations 
(alim in m/s2)* Investigated Sections 

A B1 B B2 C D E 

0.49 
Load Model I (LM-I) 2.71 0.25 0.97 0.25 0.94 0.81 1.68 
Load Model I (LM-II) 2.93 0.27 1.06 0.27 1.04 0.89 1.84 
Load Model I (LM-III) 2.70 0.26 1.00 0.25 0.97 0.84 1.73 
Load Model I (LM-IV) 2.61 0.31 0.76 0.32 0.75 0.73 1.86 

*alim = 1.5%g = 0.15 m/s2: indoor footbridges [9,14] 
*alim = 5.0%g = 0.49 m/s2: outdoor footbridges [9,14] 

Table 7. Structural model peak accelerations corresponding to three people walking. 
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It must be emphasized that the footbridge overhang sections (Sections A and E, see Figure 
16) have presented very high peak accelerations, in all investigated situations, as presented 
in Tables 5 to 7. This is explained due to the fact that the transient impact produced by the 
pedestrians on the entrance and exit of the investigated structure have generated high 
acceleration values. 

Based on a quantitative analysis of the maximum accelerations, it was verified that the 
loading model I (LM-I) has produced the highest peck acceleration values practically in all 
investigated cases, as illustrated in Tables 5 to 7. 

These peak accelerations presented in Tables 5 to 7 are related to a pedestrian normal 
walking situation. It must be emphasized that the limit acceleration value is equal to 0.49 
m/s2 [9,14], when the outdoor footbridges are considered in the analysis. 

Based on the finite element modelling of the steel-concrete composite tubular footbridge 
dynamic behaviour, the numerical results presented in Tables 5 to 7 indicated that the 
dynamic actions produced by human walking led to peak accelerations higher than the 
limiting values present in design code recommendations (Outdoor footbridges: alim = 5%g = 
0.49 m/s² [9,14]), as depicted in Tables 5 to 7. 

6. Final remarks 

This contribution covers the application of tubular structural elements in pedestrian 
footbridge design and tries to give an overview about the evaluation of tubular footbridges 
dynamic behaviour, objectifying to help practical structural engineers to deal with this kind 
of problem and to allow for a further application of tubular structural elements in 
pedestrian footbridge design. 

The present investigation was carried out based on four dynamic loading models (LM-I to 
LM-IV) implemented objectifying to incorporate the dynamic effects induced by people 
walking on the footbridges dynamic response. In these models, the position of the human 
walking load was changed according to the individual position. However, a more realistic 
loading model (LM-IV) considered the ascent and descending movement of the human 
body effective mass at each step load (human walking load) and additionally also 
incorporates the transient effect due to the human heel impact. 

The proposed analysis methodology considered the investigation of the dynamic behaviour, 
in terms of serviceability limit states, of a composite tubular footbridge, spanning 82.5 m. 
The structure is composed by three spans (32.5 m, 17.5 m and 20.0 m, respectively) and two 
overhangs (7.50 m and 5.0 m, respectively). The structural system is constituted by tubular 
steel sections and a concrete slab and is currently used for pedestrian crossing. 

A computational model, based on the finite element method, was developed using the 
ANSYS program. This model enabled a complete dynamic evaluation of the investigated 
tubular footbridge especially in terms of human comfort and its associated vibration 
serviceability limit states. 
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The results found throughout this investigation have indicated that the dynamic actions 
produced by human walking could generate peak accelerations that surpass design criteria 
limits developed for ensuring human comfort. Hence it was detected that this type of 
structure can reach high vibration levels that can compromise the footbridge user’s comfort 
and especially its safety. 

The analysis methodology presented in this paper is completely general and is the author’s 
intention to use this solution strategy on other pedestrian foot-bridge types and to 
investigate the fatigue problem. The fatigue problem is a relevant issue and certainly much 
more complicated and is influenced by several design parameters and footbridge types. 
Further research in this area is currently being carried out. 
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1. Introduction 

Research efforts continuously are looking for new, better and efficient construction 
materials. The main goal of these researches is to improve the structural efficiency, 
performance and durability. New materials typically bring new challenges to designer who 
utilizes these new materials. In the past decades various sandwich panels have been 
implemented in aerospace, marine, architectural and transportation industry. Light-weight, 
excellent corrosion characteristics and rapid installation capabilities created tremendous 
opportunities for these sandwich panels in industry. Sandwich panel normally consists of a 
low-density core material sandwiched between two high modulus face skins to produce a 
lightweight panel with exceptional stiffness as shown in Figure 1. Face skins act like flanges 
of an I-beam. These faces are typically bonded to a core to achieve the composite action and 
to transfer the forces between sandwich panel components.  

1.1. Main principles of sandwich structures 

Typical sandwich composite construction consists of three main components as illustrated in 
Figure 1. The sandwich consists of two thin, stiff and strong faces are separated by thick, light 
and weaker core. Faces and core materials are bonded together with an adhesive to facilitate 
the load transfer mechanism between the components, therefore effectively utilize all the 
materials used. The two faces are placed at a distance from each other to increase the moment 
of inertia, and consequently the flexural rigidity, about the neutral axis of the structure. 

In sandwich structure, typically the core material is not rigid compared to face sheets; 
therefore, the shear deflection within the core is insignificant in most cases. The shear 
deflection in the faces can be also neglected. The effect of shear rigidity in the core is shown 
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in Figure 2. Figure 2a shows an ideal sandwich beam using relatively stiff core, therefore the 
two faces cooperate without sliding relative to each other. Figure 2b shows a sandwich 
beam using weak core, therefore the faces are no longer coupled together effectively and 
each face works independently as plates in bending. The use of weak core in shear results in 
significant loss of the efficiency of the sandwich structures. In a typical sandwich panel the 
faces carry the tensile and compressive stresses. The local flexural rigidity of each face is 
typically small and can be ignored. Materials such as steel, stainless steel, aluminum and 
fiber reinforced polymer materials are often used as materials for the face. The core has 
several important functions. It has to be stiff enough to maintain the distance between the 
two faces constant. It should be also rigid to resist the shear forces and to prevent sliding the 
faces relative to each other. Rigidity of the core forces the two faces to cooperate with each 
other in composite action. If these conditions are not fulfilled, the faces behave as two 
independent beams or panels, and the sandwich effect will be totally lost. Furthermore, 
rigidity of the core should be sufficient to maintain the faces nearly flat, therefore prevent 
possibility of buckling of the faces under the influence of compressive stress in their plane. 
The adhesive between the faces and the core must be able to transfer the shear forces 
between the face and the core. 

 
Figure 1. Schematic of sandwich construction 

1.2. Applications 

Sandwich construction provides efficient utilization of the materials used for each 
component to its ultimate limit (Zenkert, 1997). The sandwich structure offers also a very 
high stiffness-to-weight ratio. It enhances structure flexural rigidity without adding 
substantial weight and makes it more advantageous as compared to composite materials. 
Sandwich constructions have superior fatigue strength and exhibit superior acoustical and 
thermal insulation. Sandwich composites could be used in a wide variety of applications 
such as: 

Aerospace Industry: Sandwich composites are increasingly being used in the aerospace 
industry because of their bending stiffness-to-weight ratio. Floorboards, composite wing, 
horizontal stabilizer, composite rudder, landing gear door, speed brake, flap segments, 
aircraft interior and wingspans are typically made of sandwich composites.  

Marine Industry: Sandwich composites are ideally suited for the marine industries most 
advanced designs. The foam cores meet the critical requirements of strength, buoyancy and 
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low water absorption. Applications include the construction of bulkheads, hulls, decks, 
transoms and furniture. 

  
Figure 2. Presentation of the effect of a) rigid and b) week core. 

Transportation Industry: High strength-to-weight ratios of sandwich composites offer great 
advantages to the transportation industry. The insulating, sound damping properties and 
low cost properties make them the choice materials for the constructions of walls, floors, 
doors, panels and roofs for vans, trucks, trailers and trains.  

Architectural Industry: The foam offers an excellent thermal and acoustical insulation which 
makes it ideal choice for the architectural industry. Typical applications include structural 
columns, portable buildings, office partitions, countertops and building facades. 

1.3. Literature review 

Work on the theoretical description of sandwich structure behaviour began after World War 
Two. (Plantema, 1966) published the first book about sandwich structures, followed by books 
by (Allen, 1969), and more recently by (Zenkert, 1995). Although (Triantafillou and Gibson, 
1987) developed a method to design for minimum weight, and reported the failure mode map 
of sandwich construction, without considering the post yield state of the sandwich structure.  

The basic sandwich structure theory presented in all these texts is generally called the 
classical sandwich theory. This theory assumes that: 

 The core carries the entire shear load in sandwich beams and plates. 
 The face sheets carry the entire bending load. 
 Core compression is negligible. 
 This theory states that the above–mentioned assumptions are true if: 

1. The core and face sheets are elastic. 
2. The overall length to thickness ratio is high. 
3. The face sheet thickness is small compared to the overall thickness. 
4. The ratio of mechanical properties between the face sheet and the core is high. 

With these assumptions, a sandwich structure is considered to be incapable of acquiring 
additional load carrying capacity once the core yields. 

(Mercado and Sikarskie, 2000) reported that the load carried by sandwich structures 
continue to increase after core yielding. Knowing that the core could not carry additional 
load after yield, this increasing load carrying capacity of post yield sandwich structure 
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initiates the postulation that the additional shear load was transferred to the face sheets. To 
account for the above-mentioned phenomenon, (Mercado et al, 1999) developed a higher 
order theory by including a bilinear core material module. This theory yields a fairly 
accurate prediction on the deflection of a foam cored sandwich structure in four point 
bending (Mercado et al, 2000). In addition, this theory does not take into account the core 
compression under localized load, or any geometric non-linearity. The classical sandwich 
beam theory also assumes that in-plane displacements of the core through its depth are 
linear. In other words, it was assumed that the core thickness remains constant and cross-
sections perpendicular to the neutral axis remain plane after deformation. This assumption 
is generally true for traditional core material such as metallic honeycomb. However, this 
assumption is not suitable for soft, foam-based cores, especially when the sandwich 
structure is subjected to a concentrated load (Thomsen, 1995). With a much lower rigidity 
compared to metallic honeycomb, foam-based cored sandwich structures are susceptible to 
localized failure. Insufficient support to the face sheets due to core compression near the 
application points of concentrated loads can lead to failures such as face sheet/ core 
delamination, face sheet buckling, and face sheet yielding. This localized non-linearity is 
reported by many researchers such as (Thomsen, 1995), (Thomsen, 1993), (Rothschild 1994), 
(Caprino, 2000), and (Gdoutos et al, 2001). The shear distribution at localized failure points 
has not been well defined. (Miers, 2001) investigated the effect of localized strengthening 
inserts on the overall stiffness of a sandwich structure. This localized strengthening 
increases the rigidity of the sandwich structure, but the addition of high stiffness inserts 
complicates the manufacturing process of sandwich structure.  

To design an efficient sandwich structure, it is vital to understand the behavior of each layer 
in the structure. Classical sandwich theory (Zenkert 1995, Plantema 1966, Allen 1969), higher 
order theory by Mercado (2000) and high order theory developed by Frostig et al. (1992) 
could predict the sandwich panel behavior fairly accurate in the linear range. However, 
these theories could not give an accurate prediction of the sandwich structure behavior after 
core yielding. Large deflection of sandwich structures due to core yielding could vary the 
direction of the applied load on the structure.  

1.4. Research objective 

To design an efficient sandwich structure, it is vital to understand the load distribution 
pattern in each layer of the structure. Most of the previous efforts are made by using 
classical sandwich theory, and higher order theory, where high order theory predicted the 
sandwich panel behavior fairly well in the linear range. However, these theories could not 
give an accurate prediction of the shear distribution in each layer after core yielding. Large 
deflection of sandwich structures due to core yielding could vary the direction of the 
applied load on the structure. Change in loading direction would obviously change the 
shear distribution in the sandwich structure. In order to investigate the exact change of 
shear distribution due to distributed loads, as well as geometric nonlinearity and localized 
core failure, finite element analysis is used in this research effort. The main objective of this 
research is to investigate the following: 
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1. Post yield behavior of sandwich panel. 
2. Effect of geometric non-linearity under distributed loads. 
3. The effect the size of the distributed load area on the behavior of the sandwich panel 

beyond the core yield limit for different types of materials is investigated. These 
parameters are the determining factors of the significance of geometric non-linearity 
and core material nonlinearity 

The above investigation is done in view of the following points: 

1. Localized core yielding occurs mainly through core compression. Therefore, analysis 
should be done using material properties determined from compression test. 

2. For practical purposes, the assumptions that have been made in developing the 
sandwich panel theory eliminated part of the problem physics. 

3. The Finite Element Model (FEM) is extended to include the relative dominance of core 
shear failure and face sheet yielding. 

4. Localized loads are modeled as load on small partitioned area to better simulate the 
actual loading condition.  

5. Experimental verification is conducted for selected cases. 

2. Physical model 

This section presents the physical model of the sandwich panel, which includes geometry, 
boundary conditions as well as the materials used in the investigation. 

2.1. Sandwich panel geometry 

The sandwich panel consists of two face sheets made of metal. The thickness of each face is 
t. Soft core of c thickness is sandwiched between those face sheets. The core material is made 
of foam which is soft compared to the face sheets .The panel is square in shape. The side 
length is designated by a. Figure 3 illustrates the sandwich panel geometry whereas the 
dimensions of the sandwich panel are shown in Table 1.  

 
Figure 3. Illustration sandwich plate geometry. 
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Parameter Dimension Note 

a 600 mm Constant 

t 1.0 mm Constant 

c 30 mm Constant 

Table 1. The value of the parameters shown in Figure 3. 

2.2. Assumptions 

This research takes into consideration the geometric non-linearity as well as the material 
nonlinearity. The following assumptions are made to simplify the model without losing the 
problem physics:  

1. Face sheets and core are perfectly bonded. 
The FEM model assumes no delamination occur between layers.  

2. Face sheets remain elastic at all time. 
Due to the significantly higher yield strength and modulus of elasticity of the face 
sheets compared to the core, face sheets are assumed to remain elastic throughout the 
loading for simply supported panel. The analysis stops when the face sheets start to 
yield. 

3. Geometric non-linearity has a significant effect: 
Geometric non-linearity is considered to have significant effect on the load distribution 
on each layer of the sandwich structure. 

2.3. Boundary condition 

Due to the symmetry of the sandwich panel (symmetric over X-axis and symmetric over Z-
axis), only quarter of it is being modeled. Such symmetric boundary conditions are applied 
of the X-axis and Z-axis. The two planes of symmetry of the panel have symmetric boundary 
conditions, (see Fig. 4). A simply supported boundary condition is applied to strip area of 
the quarter panel as shown in Fig. 5. This simulates the simply supported condition of the 
panel. The loading area is square in shape, its side length varies in steps of 100, 200, 400 and 
600mm for full panel dimension. But when dealing with quarter panel, the side length is 50, 
100, 200, and 300mm  

2.4. Study parameters 

The main parameters that have influence on the performance of the sandwich plate are, the 
loading area on which the load is distributed and the core material stiffness. 

2.4.1. Loading 

The load is applied to the sandwich top face sheet as a distributed load which is increased 
gradually (step by step) till the face sheet stress reaches yield stress or the core material 



 
Finite Element Analysis of Loading Area Effect on Sandwich Panel Behaviour Beyond the Yield Limit 359 

reaches fracture limit. The distributed load is applied on the top surface of the sandwich 
panel. The area on which the distributed load is applied (see Figure 5 and 7) is located at the 
middle of the top face sheet plate. The loading area at the middle top face of sandwich panel 
is square in shape. This area has been varied from 100X100 mm2 through 200X200 mm2, 
400X400 mm2, and 600X600 mm2 so the ratio of these areas relative to the total area of the 
sandwich panel is 1/36, 4/36, 16/36 and 36/36 respectively. 

 
Figure 4. Sandwich panel boundary condition for a) X-Y plane and b) Y-Z plane. 

2.4.2. Core material 

In the current research, different materials are used. Their modulus of elasticity is varying 
from 37.5 MPa through 138.6 MPa, 180 MPa, and 402.6 MPa as shown in Table 2. Core 
thickness is selected to be 30mm as shown in Table 1. 

2.5. Material properties 

The core of sandwich structure is used to separate the two faces, most often identical in 
material and thickness, which primarily resist the in plane and bending load. The core is 
mainly subjected to shear so that the core shear strain produces global deformations and 
core shear stresses. Thus, core must be chosen such that not to fail under applied transverse 
load. It should have shear modulus that is high enough to give the required stiffness. 

(a) 

(b)
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Furthermore, its young's modulus normal to the faces should be high enough to prevent 
contraction of the core thickness and therefore a rapid decrease in flexural rigidity. The core 
should have low density in order to add as little as possible to the total weight of sandwich 
structure. Because of low density requirement, core materials are very different from face 
sheet materials. A detailed characterization of their mechanical behavior is essential for their 
efficient use in structural application. Four types of foam H100, H250, AirexR63.50 and 
Herex C70.200 are investigated. 

 
Figure 5. Panel span overview of quarter sandwich panel for different loading area 

2.5.1. Mechanical properties for face sheet 

Material properties for the sandwich plate face sheets are taken from (Boyer and Gall (Eds.), 
1991). Aluminum 3003-H14 is a type of aluminum alloy that has high resistance to corrosion 
and is easy to weld is used in this investigation. The 3003-aluminum family is normally used 
in the production of cooking utensils, chemical equipment, and pressure vessels. The face 
sheets are assumed to remain elastic at all times. Therefore only elastic material properties 
are required for the face sheets and they are presented in Table 2. 

2.5.2. Mechanical properties for core 

This subsection presents the core material properties used to model the sandwich panel. In 
all cases, face sheets of the sandwich structures are assumed to remain elastic throughout 
the analyses. Therefore, only core materials require a good post yield behavior descriptions. 
The core materials undergo plastic deformation; hence there is a need to obtain a full 
description of the core materials’ behavior upon yield initiation.  
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Airex R63.50 has high fatigue strength, high three-dimensional formability, and high 
resistance to dynamic loads. Materials in Airex R63 family are widely used in the 
production of marine hulls and lightweight cars due to the appreciation of their low density 
and high strength and stiffness to weight ratio. Airex R63.50 is presented in Table 2. 

Material properties of the HerexC70.200 foam core is obtained from (Rao, 2002) work. Herex 
C70.200 is an isotropic and stiff foam material with high stiffness and strength to weight 
ratios. The materials in Herex C70 family have excellent chemical resistance and low 
thermal conductivity and water absorption. The appreciation of these inherent properties of 
Herex C70 materials makes this material a popular choice for the core materials of structural 
sandwich structures in marine and railway applications. The stress strain curve of this 
material is presented in Figure 6.  

In this research a first-order idealized core material property module suggested by 
(Mercado, Sikarskie, 1999) is used. This first-order idealized model, also called the bi-linear 
model, describes the material properties of the core with the stress strain curve as shown on 
Figure 6a and 6c. 

The other material used in this research is linked PVC close called cellular foam (divinycell). The 
type of divinycell, H100, H250 with densities of 100 and 250 kg/m3, their mechanical properties 
are stated in Table 2 and their stress strain curves are shown in Figure 6b and 6d respectively. 
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Face sheet : 
Aluminum 3003-H14 

Boyer and 
Gall 1991 

69,000 0.33 25,000 120 145 
Not 
available 

Core A : AirexR63.50 Rao, 2002 37.5 0.335 14.05 0.45 0.637 0.019 

Core B: H100  Kuang, 2001 138.6 0.35 47.574 1.2 1.5 0.0108225 

Core C: Herex 
C70.200 

Rao, 2002 180 0.37 65.69 1.6 2.554 0.0162 

Core D: H250  Kuang, 2001 402.6 0.35 117.2 4.5 5 0.014 

Table 2. Compression of sandwich panel material properties  

3. Finite element model 

This section presents the development of finite element models for simply supported 
sandwich panel. Detailed descriptions of the boundary conditions, element types, and the 
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loading are presented in the coming subsections. The finite element software used in the 
development of the finite models is (I-DEAS Master Series 10 1999). The relatively robust 
and user-friendly solid modeling and finite element meshing interface are the main 
advantages of this solid modeling and finite element software. 

 
Figure 6. Stress strain curve for a)material A: AirexR63.50 (Rao, 2002), b) material B: H100 (Kuang, 
2001), c)material C: Herex C70.200 (Rao, 2002), d) material D: H250 (Kuang, 2001) 

3.1. Model assumptions 

All the finite element model analyses done in this research involves the use of non-linear 
analysis capability of I-DEAS, which includes geometric non-linearity and material 
nonlinearity. With geometric non-linearity, the software takes the effect of geometry 
changes into account while calculating the solution. Using material non-linearity option the 
non-linear behavior of the material response (i.e. post yield material properties) is taken into 
account.  

Below are the assumptions made for the Finite Element Model:  

1. Face sheets and core are perfectly bonded: 
The numerical model assumes no delamination occur between layers. This assumption 
is applied by utilizing the partitioning option in the preprocessing module of the 
software. This option allows the analyst to deal with the whole volume of the structure 
as one unit also it allows the analyst to assign different material for each partitioned 
volume.  
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2. Face sheets remain elastic all the time:  
Due to the high yield strength and high modulus of elasticity of the sandwich face 
sheets compared to the core, face sheets are assumed to remain elastic throughout the 
loading for the simply supported panel. 

3. Load scenarios are quasi-static: 
The loading cases considered are modeled quasi-static instead of dynamic. Incremental 
loadings are applied slowly during the actual experiments (i.e. simulates exactly the 
real situation). Therefore, the type of analysis done for this research effort is “static, 
non-linear analysis”. 

4. Geometric non-linearity has a significant effect: 
Geometric non-linearity is considered to have significant effect on the load distribution 
on each layer of the sandwich structure. Therefore, all finite element analysis that is 
done takes into consideration the geometric non-linearity. This is the main difference 
between the numerical models and the theoretical models. Classical sandwich plate 
theory and higher order theory do not take shape change of the sandwich structures 
into account. 

5. The panel is simply supported from all sides. It is partitioned into three layers, forming 
three bonded material layers. 

3.2. Finite element mesh and boundary conditions 

The symmetric nature of the problem allows only quarter of the whole panel to be meshed. 
The boundary conditions applied are shown on Figures 4 and 5. The two planes of 
symmetry of the panel have symmetric boundary conditions, where in-plane displacements 
and rotation about an axis respective normal to the symmetry plane is allowed. A simply 
supported boundary condition is applied to the two other sides of the quarter panel. A 
distributed load is applied on the top surface of the sandwich panel. The area in which the 
distributed load is applied is varying as shown in Figures 5 and 7. 

 
Figure 7. The loading area with side length a) 50 mm and b) 200 mm. 

The panel is loaded with a set of loads that are varying slowly with time, and the analysis is 
carried out at each load step. The finite element software is set in such a way to solve the 
model at each load step. This allows all the analysis to be done in a single run of the finite 

(a) (b)
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element model. As a result of this, the model would consume less memory space because 
one single solid model and finite element model can be used for all load steps. 

The numerical model utilizes the map meshing facility in I-DEAS. By controlling the 
number of nodes along each edge of the solid model, this function provides full control of 
the mesh size. The element size is chosen by referring to (Miers, 2001) work in mesh 
refinement. (Mires, 2001) recommended a core element size of 1.5 mm and face element 
size of 3 mm in order to achieve convergence in the data obtained. For the current case 
constant mesh density is ensured with the mapped meshing function. This is important 
because constant mesh density ensures that the data collected from any region in the 
panel are of the same degree of resolution. Three-dimensional solid brick elements (20 
node brick element) are used in this analysis. Second order (parabolic) brick elements are 
chosen over the first order (linear) brick elements in order to better interpolate the data 
between nodes. Figure 8 shows the FEM mesh model of the sandwich panel and the brick 
element utilized in FEM. 

 
Figure 8. Illustration of a) Meshed quarter sandwich panel and b) Solid Brick Element (20 node brick 
element) used in mesh generation. 

Since the analysis involves material non-linearity, a yield function or yield criteria needs to 
be defined for the model. Von Mises yield criteria and its associated flow rule is used in this 
analysis. Isotropic hardening is also used to describe the change of the yield criterion as a 
result of plastic straining. Only the core elements are assigned a yield function due to the 
assumption that only core yielding occurs throughout the loading process. The face sheets 
are assumed to remain elastic at all time; hence no yield function needs to be assigned to the 
face sheet elements. However the yield point of the face sheet material is fed to the software 
to be used as indicator for stopping the analysis.  

3.2.1. FEM challenges 

The following challenges are experienced: 

(a) (b) 



 
Finite Element Analysis of Loading Area Effect on Sandwich Panel Behaviour Beyond the Yield Limit 365 

 One of these challenges is extracting the element force and storing them in a file. This 
problem is solved by displaying the data on the screen and then copied and stored in a 
separate file for further analysis. 

 Identifying the nodes for a surface of interest so that they can be extracted from the file 
in which the elemental forces are stored. Since I-DEAS labels the nodes, the nodes 
corresponding to the surface of interest are copied and stored in a separate node labels 
file for further analysis.  

 MATLAB program is developed to extract the elemental forces of the surface of interest 
from the file in which they are stored by matching the node labels of the surface that are 
stored in node labels file. 

 Singularity is a serious problem. The post processing analysis for the quality of the 
elements is utilized to identify the poor elements. The problem is solved by refining the 
element size. 

3.2.2. Advantages of FEM 

The following are some advantages of using FEM over other methods: 

 FEM is capable of capturing the problem details with little approximations compared to 
the analytical techniques.  

 FEM provides solution for many problems like the current case that they do not have 
analytical solution. 

 FEM method is cheap compared to the experimental models. There is no need to 
produce a prototype or to have high tech facility to conduct the investigation. 

 There is no need for the investigator to be available in a certain place to perform the 
investigation. 

3.3. FEM verification 

The finite element model is verified analytically and experimentally. The analytical 
verification is based on the classical sandwich panel theory whereas the experimental 
investigation is carried out for selected cases. 

3.3.1. Analytical verification 

Classical sandwich theory has been utilized to obtain close form solution (Zenkret, 1995). The 
comparison between the numerical and theoretical models in the linear rang are presented in 
Figure 9. The Figures show very good agreement between theoretical and numerical solution. 
The classical sandwich plate theory is therefore used to compare and validate the FEM 
predicted shear distribution of the panel in the linear range. Comparison between the FEM 
determined shear distribution and the classical sandwich plate theory distribution is 
performed at all load steps. It is assumed that is the core in the linear range carries the entire 
shear load. Results obtained from the closed form solution are compared with the total 
resultant shear load in the global Y direction, RTOT (Yg), obtained numerically using MATLAB. 
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Sample of the total shear resultant comparisons between the numerical and theoretical models 
in the linear rang are shown Figure 9a and 9b for load of 17.2 kPa and 51.7 kPa respectively. 

 
Figure 9. Total plate shear distribution comparison along X-axis at a) 17.2 kPa and b) 51.7 kPa. 

3.3.2. Experimental verification 

To assure accuracy and validity of the results some selected cases are investigated 
experimentally. The results obtained from the FEM are compared against those obtained 
experimentally. Both results show excellent agreement. 

3.3.2.1. Test setup 

Here is a description of the experimental setup used in the study and consists of the 
following: 

1. The core of the sandwich panel is made of polyurethane foam. Top and bottom sheets 
of the sandwich panel are made of steel. The dimension of the panels used in the 
investigation is 250X250 mm2. Mechanical properties of the sheet metal are obtained 
experimentally. 

(a) 

(b)
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2. Fixture for applying simply supported boundary condition is produced. Figure 10 
shows two different views of the fixture. 

3. The test is performed on a uniaxial testing machine that is shown in Figure 11. 
4. Distributed load is applied to the specimen by adaptors manufactured for this purpose. 

Figure 12 illustrates the adapters used in experimental setup.  

 

 
Figure 10. Pictures of the fixture that is produced for applying simply supported boundary condition, 
a) top view and b) 3D view. 

 

 
Figure 11. Uniaxial testing machine a) with specimen and b) without specimen 

(a) (b)

(a) (b)
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Figure 12. The adapters used in the experiments for applying distributed load on specimen of side 
length a) 200mm, b) 150mm and c) 100mm. 

3.3.2.2. Mechanical properties of the specimen 

The sandwich panel is made of polyurethane foam and steel sheets. The mechanical 
properties are obtained experimentally for both the sheets and the core. ASTM Designation: 
C 365 – 00 used for testing the core material whereas ASTM Designation: D 638 – 00 used for 
testing the sheets.  

3.3.2.3. Analysis 

The relation between the applied load and the deflection of the specimen center point are 
shown in Figures 13 and Figure 14 that present a comparison between the experimental 
results and FEM results. It may be seen that the results are in very good agreement.  
To assure accuracy of the experimental results, the experiment is performed many times and 
the average values are plotted. The variation in the experimental results dose not exceeds 
7% of the average value. 
 

 
Figure 13. Comparison of load versus center deflection for core thickness = 49 mm, Sheet Thickness = 
0.5 mm, applied load area = 200 X 200 mm2. 
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Figure 14. Comparison of load versus center deflection for core thickness=71 mm, sheet Thickness = 0.5 
mm, applied load area = 150 X 150 mm2. 

4. Results 

The main advantage of these results over the sandwich panel theory is that both geometric 
and material nonlinearities are considered without approximation. Usually these 
approximations eliminate part of the problem physics. By utilizing “I-DEAS’ post 
processing module, stress and its all components, strain and it is all components including 
the plastic strain, and deformations are obtained. 

Figures 15a and 15b present Von Mises stress contours for both panel and core respectively 
whereas Figures 16a and 16b present the plastic strain for both panel and core respectively. 
It is clear from Figure 16a and 16b that the plastic deformation occurs close to the panel 
support (close to the area where boundary conditions are applied). 

The criterion, which is adopted by this investigation at what load step the FEM should stop 
the analysis, is when any of face sheets starts to yield or core material reaches fracture limit. 
This criterion fulfills the need of the designer; in general design engineer tries to avoid panel 
face sheets permanent distortion. As soon as the face sheet metal starts to yield, this means 
that permanent deformation is taking place. So all results produced neither exceed the 
loading that could cause face - sheet yielding nor exceed core fracture limit. 

Figure 17a present the effect of loading area (area on which the load is applied) for core 
material A. It is obvious as the loading area increases the stress decreases for the same 
amount of loading. Same thing can be said for the bottom face sheet in Figure 17b. The core 
material (Figure 17a) reaches yield at low loads when the loading area is small.  

The effect of loading area at sandwich panels of cores A, B, C and D (see Table 2) are 
presented 18 through 21. The maximum shear stress of each core in these graphs is 
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normalized by the maximum shear yield strength of its corresponding core material and the 
loading area is normalized by the total surface area of the panel. Also the shear stress of the 
face sheets is normalized by the corresponding shear yield strength of the face sheets. It can 
be seen from Table 2, the core materials are labeled from A to D in ascending order 
according to their stiffness. It is obvious from Figures 18 through 21 that the load carrying 
capacity of sandwich panel increases by increasing core stiffness. It is observed through all 
the results that the lower face sheet reaches yield limit before the top face sheet so in the 
Figures 18 through 21 the lower face sheet is presented. The results of this work are 
generated according to the univariate search optimization technique (Chapra and Canal, 
2006).  

 

 
Figure 15. Von Mises stress contour (in MPa) for panel A of loading area 4/36 at load step 145kPa for a) 
the whole panel and b) the core of the panel. 

(a)

(b)
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Figure 16. Demonstration of the plastic deformations contour for panel A of loading area 4/36 at load 
step 145 kPa for a) the whole panel and b) the core of the panel. 

5. Discussion 

As illustrated in Figure 16, the face sheet material starts to yield (entering the plastic range) 
close to the support (where the boundary conditions are applied). This is physically true, the 
distributed load over the loading area becomes concentrated reaction force on the strip area 
on which the boundary conditions (simply supported boundary condition) are applied, i.e., 
distributed load is converted to concentrated load. So the area where the boundary 
conditions are applied reaches the yield stress range before any other part of the panel.  

As the loading area decreases the load is getting closer to the concentrated load, this is why 
in Figure 17 panel A of area ratio 1/36 reaches yield (plastic range) at lower load, than the 

(a)

(b)
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other panels presented in the Figure. Increasing the loading area increases the load carrying 
capacity of the panel.  

 

 
Figure 17. Presentation of panel A maximum shear stress versus loading for different load area ratio for 
a) Core and b) Lower Sheet. 

 
Figure 18. Presentation of maximum shear stress versus loading for A, B, C, and D core material panels 
of load area ratio 1/36 for a) Core and b) Lower Sheet. 

 
Figure 19. Presentation of maximum shear stress versus loading for A, B, C, and D core material panels 
of load area ratio 4/36 for a) Core and b) Lower Sheet. 

(a) (b)

(a) (b)

(a) (b)
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Figure 20. Presentation of maximum shear stress versus loading for A, B, C, and D core material panels 
of load area ratio 16/36 and core thickness 30mm for a) Core and b) Lower Sheet. 

 
Figure 21. Presentation of maximum shear stress versus loading for A, B, C, and D core material panels 
of load area ratio 36/36 for a) Core and b) Lower Sheet. 

Figure 19 through 21 present that the lower face sheet for core material B, C and D reaches 
yield limit before their corresponding core material. This can be referred to the high stiffness 
of its core material, i.e., the panel gets closer in its behavior to isotropic plate. 

It is obvious from Figure 17 through 21 that panel carrying capacity increases beyond core 
yield limit. In yield range the core material keeps deforming while the stress is constant (see 
Figure 22). This deformation works as a mechanism for transferring the excess load to the 
face sheets. For example in Figure 20, the shear stress of core material A after 100kPa load 
does not change whereas the shear stress of the corresponding lower face sheet keeps 
increasing.  

To replace the core material with same material of the top and bottom sheets, core’s width 
should be shrunk according to the ratio of the modulus of elasticity of the core to that of the 
metal. The materials B, C and D are relatively stiff in comparison with A. Equivalent cross-
section of core material (see Figure 23) has the same height for all cases and the width is 
increasing according to the modulus of elasticity ratios. For a rectangle the second moment 
of area (wh3/12) is varying linearly with the width (equivalent width). The effect of the 

(a) (b)

(a) (b)
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difference between the materials B, C, and D is relatively small. So the stress curves for these 
panels are close to each other and the differences are small as it can be seen in Figures 17 
through 21.  

 

 
Figure 22. Schematic drawing of the shear stress for both face sheets and the core within plastic range.  

 
Figure 23. Equivalent cross-section of core material with the same height  

6. Conclusions 

 Investigation of sandwich panel behavior beyond core material yield is carried out. The 
investigation is accomplished in sight of the core material nonlinearity and the 
geometric nonlinearity of the whole panel. High tech software ‘I-DEAS’ (Integrated 
Design Engineer Analysis software) is utilized to carry out the investigation. 

 Finite element model is generated using ‘I-DEAS’ software. This model is validated 
against experimental and analytical cases available in the literature. To assure model 
accuracy experimental investigation for selected cases is carried out and compared with 
FEM. The model shows very good agreement with the analytical as well as the 
experimental one. 

 It is proved that the load carrying capacity of sandwich panel can be improved by 
loading the panel beyond the core yield limit. This load is going to be transmitted to the 
face sheet. 

 Increasing the stiffness of the core material to a certain extent leads to face sheet 
yielding before the core material. It is proved that increasing core stiffness increases the 
load carrying capacity of the sandwich panel.  

 Loading area plays good roll in the load carrying capacity of sandwich panel. 
Distributing loads over large area of panel surface leads to higher load carrying 
capacity. 
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7. Recommendations 

The following are recommendations for further extension of the FEM analysis: 

 Investigate the bonding between the face sheets and the core after yielding. 
 Modeling face sheets other than metal face sheets such as fiber composite materials  
 Extending the FEM to include the bonding strength between the face sheets and the 

core so the relative dominance of core shear failure, face sheet yielding, or face sheet 
delamination could be determined. 
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1. Introduction 

Concerning the mechanical stress and the electrical-mechanical behavior ULSI multilevel 
metallization systems are more and more sensitive against influences of geometrical and 
material changes. The mechanical and electrical reliability of these metallization systems is 
influenced by this. The reliability of such metallization systems is investigated by thermal 
and thermal-electrical accelerated stress tests under high temperature load. This leads to 
degradation due to electro-, thermo- and stress migration. This is one major concern in 
reliability investigations. Generally measurements are time consuming, expensive and the 
time-to-market cycle is in the focus of interest too. The prediction of local weak spots in 
interconnects, vias and solder bumps by finite element simulations are a helpful procedure. 
Beside this the modern 3-d integration leads to more complex material compositions in the 
systems concerning the coefficient of thermal expansion (CTE) and other material 
properties. Higher applied currents on the interconnects and bumps result in Joule heating, 
high temperature gradients and mechanical stress gradients in the bump and metallization 
systems. The temperature gradients are much higher compared to systems with wide 
interconnect lines and bumps with large diameters like in conventional packages. Due to 
this in ball grid array (BGA) bumps as well as µ-bumps and small through silicon via (TSV) 
connections current induced migration effects as electromigration (EM) and as result of the 
high temperature gradients thermomigration (TM) can occur. In interconnects consisting of 
copper caused by stress gradients due to the different material properties under high 
temperature load also stress migration (SM) occurs.  

In this chapter the degradation phenomena in dual damascene copper metallization 
structures as well as degradation in bumps, µ-bumps and TSV are presented. The 
degradation is current, temperature and mechanical stress induced under a high applied 
current and temperature load. The finite element analyses and the mass flux divergence 
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calculation of these phenomena will show the suitability of the method in comparison with 
experimental results. For a prediction of the weakest spot the suitability of the finite element 
mesh as well as the modeling concerning the structure shape has to be investigated. 
Especially edges in the model can influence the quality of the results. The geometrical data 
of the different metallization or package structures can be taken from the layout as well as 
optical, scanning microscope or other analytical techniques. Especially for the prediction of 
the electromigration induced weakest spot in the system, the location of the maximum 
current density is a major indicator for the fault location. Due to this the maximum current 
density at localizations of structure inhomogeneity must be checked up. Out of this the 
maximum current density is calculated by conformal mapping to predict an optimized 
modeling concerning the shape of the edges and the use of a radius instead of edges. 
Geometrical variations like the thickness of the first and second metallization and a 
comparison of the different migration mechanisms will be presented. Concerning the 
mechanical stress of the DD-Cu metallization the process induced stress will be considered 
with different processing temperatures of the copper metallization. The influence of 
different dielectrics on the mechanical stress is also determined. Compared to DD-
metallizations and the traces, the bumps are only exposed by electro- and thermomigration. 
The thermal-electrical-mechanical behavior of µ-bumps and TSV will be shown for a Wafer-
on-Wafer (WoW) structure. 

2. Calculation of the migration mechanism 

To figure out the possibilities of determining the effects of migration in solder bumps, 
interconnects, via and conductive pathways shall be shown here. Migration, particularly in 
copper or aluminum metallization or migration of solder bumps of a flip-chip package, are 
presented in [Banas, Hou, Liu 2007, Liu2008, Tan, Wang]. Simulation algorithms are based 
on analogies and allow only partly- or no material or sizing variations. 

Basically, migration processes are described in the metallization on the consideration of 
diffusion processes. These diffusion processes can lead to a change in dimension or change 
of geometries of the metallization [Wever]. On one side material loss or the hole formation 
at these locations leads to tensile stress, while it comes in places of material accumulation to 
a compressive stress. This leads to a reflux, also called the back stress in the material. There 
is a critical length existing, which compensates the electromigration related flux and the 
reflux. The migration of atoms leads to a change of the expansion in the metal, which then in 
turn changes the chemical potential. Since the chemical potential is very often influenced by 
a stress term, this leads to stress gradients and a reflux. In microelectronic applications the 
current flux pathways are subject to large thermal strain before any current load applies. 
This thermal strain, along with the strain caused by the electromigration can lead to a 
nonlinear reflux. Also, in the interconnects local self-heating take place, providing a 
contribution to the migration of the thermal gradients due to the local temperature 
increases. The components of the electrical, thermal and stress migration flux are added by 
superposition. 
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The diffusion coefficient with the activation enthalpy of ∆H is defined as follows: 

 /
0

BH k TD D e  (1) 

The change of place takes place at cubic (fcc) metals such as Cu, Au and Ag across the holes. 
The activation enthalpy is additively composed of the enthalpy of formation and the 
activation energy for the hole formation. Both are nearly the same size. With equation (1) 
and D0 as temperature independent diffusion constant as well as the melting temperature Tm 
[Heumann, Philibert] applies: 

 6 4 3
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Due to this a diffusion coefficient of D(Tm)≈10-8 cm2/s [Heumann] is resulting. 
 

Parameter Al Cu Ag 
Tm 660 1083 960 
∆V/Ω 0.71-1.3 0.9 0.7-0.9
E [eV] 1.234 2.15 1.921 

Table 1. Melting Temperature, Active Volume and Activation Energy [Philibert]. 

In the case of multiple components, for example solder bumps, all main materials must be 
involved in the material transport. In the example of a material of two components A and B, 
and the chemical or interdiffusion coefficients, there are the partial diffusion coefficients DA 
and DB [Wilkenson]. Using the Darken equation, the diffusion results as follows: 

  
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From the migration velocity υ, the chemical diffusion coefficient  and the mole fraction, xA 
and xB of the considered components the partial diffusion coefficients DA and DB can be 
determined. 

The direction of electrical transport in alloys such as leaded solder materials based on Sn, 
goes, depending on the proportion of Pb to the anode or the cathode. In terms of 
thermotransport moves the Pb in Sn to the cold part of the sample.  

There are different diffusion paths in the material. These are the grain boundaries, surfaces 
to adjacent materials and the volume or bulk. In the aluminum as a metallization material 
primarily grain boundary diffusion occurs. In contrary in copper as metallization material 
predominantly interface or surface migration is occurring. 

In the calculation of grain boundaries, the surface diffusion as well as the intermediate 
phase diffusion must be considered in thin layers. Atomistic transport along a grain 
boundary or phase boundary has a low activation energy and is therefore by orders of 
magnitude faster than in the crystal itself. The analytical models for the grain boundary 
diffusion δ DGB are only valid for the self diffusion in pure metals [Kaur]. The part of 
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electromigration at grain boundaries depends also on the effective width of the grain δ (d) 
concerning the mass transportation in relation to the average grain size. 

A composition of the interconnect from almost poly crystalline parts and parts where 
bamboo structured grains occur, leads to the predominant grain diffusion on one hand and 
on the other to volume diffusion and thus to high gradients in the mass flux. If the mass flux 
is blocked by a large grain, then the material accumulates relating to direction of the electron 
or material flux, in front of the blocking grain, while it comes behind the blocking grain to a 
material loss. For grain boundaries in the area of 280nm the diffusion coefficient of the grain 
boundary diffusion is in the range of the bulk material DGB ≅ DBulk [Kaur]. 

Only above a defined threshold current density ��th, resulting from the Blech effect and 
denoted as 'short-length effect', it comes to effective place change and thus to the mass 
transportation or material flux [Blech]. The mass flux is dependent on the atomic particle 
density N, the Boltzmann constant kB, the local temperature T, the current density ��, the 
specific resistance ρ, the diffusion process relating activation energy EA, the diffusion 
coefficient D0, and the effective charge eZ. 

   0* exp A
EM th
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ENJ eZ j j D
k T k T
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The thermotransport denoted as Soret-effect is a phenomenon of overlay of diffusion and 
heat conduction. They closely resemble the electrotransport with the difference that the 
considered system is not isothermal [Wever]. There is a flux of soluted atoms and the heat 
flux. These fluxes are described about the chemical potential and the thermal gradients. 
Without the occurrence of concentration gradients the equation for thermal flux is: 

 02
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 (5) 

Q* represents here the transported energy at a constant temperature and is commonly 
referred to as reduced heat of transport or transfer. The ratio Q* / kBT² is referred as Soret 
coefficient. The heat of transport is the heat flux per unit of material without temperature 
gradients. Is the value of Q* > 0 a heat flux is generated to keep the soluted atoms 
isothermal, which takes place towards the dissolved flux. Is Q* < 0 the flux of dissolved 
particles and the heat flux are counter set. It follows that in an isothermal system, a density 
gradient produces a thermal flux and vice versa a temperature gradient leads to a material 
flux [Shewman]. The heat of transport is approximately equal to the activation energy for 
the material flux [Jaffe]. 

The differences of the coefficient of thermal expansion (CTE) between the metallization 
material and surrounding materials produce, depending on the ambient temperature a 
mechanical stress. This in turn leads to a material flux within the metallization. Under strain 
the enthalpy for example of tensile-stress formation in a grain boundary is reduced, which 
increases the concentration of holes [Heumann]. 
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The Ω represents the atomic volume and σH the hydrostatic stress. Out of the components of 
the electrical, thermal, and stress migration, the total mass flux in the metallization structure 
emerges through superposition from the equations (4, 5 and 6). 

The formation of material accumulation or void formation requires a divergence in the flux 
of the total mass flux. Only divergences lead to a change in the density of the material. The 
calculation of the mass flux and mass flux divergence in metallization, traces and bumps in 
the past were done using analogies between the electrical and thermal and the thermal 
mechanical behavior or a variation of the materials or dimension were not possible [Banas, 
Hou, Liu 2007, Liu2008, Tan, Wang]. This lead to an overestimation of the temperature 
gradients and current density like proposed in [Ogurtani]. Without any applied current and 
temperature gradients the calculation of the stress migration is not possible. 

With the new program code the divgrad of T and σ are calculated directly based on the 
simulation results. The calculation of the mass flux is done for each element under 
consideration of the neighbor elements. Out of this the stress gradients are calculated. The 
divgrad terms are calculated on base of the super elements under consideration of an 
Ansatzfunction. The calculated values for the different migration mechanisms are reloaded 
into ANSYS for graphic display. Out of this the stress migration can be calculated under SM 
stress test conditions without any applied current or temperature gradients. The simplified 
equations neglecting concentration gradients for the different migration mechanism are: 
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In equation (7-9) N is the atomic concentration, the Boltzmann constant kB, the local 
temperature T, the resistivity ρ, the atomic volume Ω, Q* the heat of transport, the activation 
energy EA (taken from grain boundary and interface migration as strongest influence) and 
σH is the hydrostatic stress. The simulation and calculation sequence is shown in figure 1. 

3. Modeling and simulation improvements 

The numbers of elements, which are determining the mesh and due to this the density of the 
nodes have a strong influence on the accuracy of the simulation. Out of this the mesh of the 
investigated metallization or metallic material as main interesting point in the simulation 
plays a major rule. In the metallization itself the potential as well as the temperature is 
calculated. The metallization is surrounded by dielectric material and the traces by FR-4 or 
PCB. The bumps can be surrounded by underfillers made of different plastic materials.  
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Figure 1. Simulation and calculation sequence for one cycle (static) and more cycle (dynamic). 

Concerning the mechanical stress calculation the interfaces play also an important rule. Due 
to the different materials and their material properties the stress in the structures can be 
high and can therefore have a strong influence on the reliability of the structures. The 
calculation of the stress gradients and stress migration mass flux divergence is strongly 
affected by the accuracy of the mesh. 

3.1. Advantages of FEM compared with other applicable methods 

Simulation methods like finite difference, finite element and Monte Carlo method are 
common in the electrical engineering. Monte Carlo method is described for the calculation 
of time to failure (TTF) distributions induced by electromigration [Huang]. Also in the scope 
of semiconductor simulation it is widely used [Jacoboni]. The complexity of the 
metallization and bump structures in combination with the question of multiphysic 
investigations makes this approach inconvenient in use. The application of the finite 
difference method is described in investigations of the intermetallic phase growth for 
instance [Chao]. A model for electromigration calculated by concentration gradients is 
described in [Joo] and the void evolution and motion was investigated by [Averbuch]. The 
mass transport along interface caused by electromigration using the level-set method is 
described in [Li]. All these approaches consider only a part of the thermal-electrical and 
mechanical behavior.  

Calculations in the scope of the coupled thermal-electrical-mechanical behavior of 
metallization structures and bumps can be sufficiently carried out by commercial programs 
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like ANSYS®, ABAQUS or COMSOL using the finite element analyses. In the following 
investigation ANSYS® is used as simulation tool. 

3.2. Mesh density and singularities 

In the thermal electrical calculation the degree of freedom is only the temperature. The mesh 
of the surrounding material depends in the investigated case of the metallization and due to 
this of the metallization mesh. A coarse mesh of the metallization can lead to an insufficient 
determination of the temperature in the isolation materials. Out of this the mesh of the 
metallization should be investigated with regard of an optimization. 

The mesh can be easily refined by varying the count of the nodes. If a convergence 
concerning the change of the potential voltage is found the mesh is sufficient. A predication 
concerning the convergence of the current density at inhomogeneities like vias or edges in 
the metallization cannot be done. At these positions a strong dependence of the maximum 
current density due to current crowding in relation to the model of this inhomogeneity 
occurs. The layout from the EDA tools give at such positions rectangular edges or edges 
with a defined angle. Taking into account such an angle in the model may lead to 
insufficient calculation of the local current density at this position. Due to this the relation of 
the current crowding and angle of the edge will be investigated here. 

Considering the two-dimensional case, choosing a right angle at the edge of a metallization 
a singularity will occur. In this case the current density can be calculated analytical with an 
infinity value [Betz]. The result of the numerical analysis of the current density at this 
position converges to a defined value due to the fact that the neighbor elements are taken 
into account for the calculation. If the right angle is replaced by a radius, the calculated 
current density depends on the selected shape of the radius, the element size and the 
element shape itself. For a determination of the real current density in the structure and the 
optimized radius, the edge of a simplified metallization consisting of aluminum, is 
investigated for the 2-dimensional and 3-dimensional case in sub-models. The boundaries in 
the calculations were taken of the coarse model.  

In the 2-dimensional as well as in the 3-dimensional case the current crowding jmax/jin 
increases with increasing element count cubically and the relation of the maximum current 
density to the applied current density jmax/jin increases with decreasing element size 
exponentially. Out of this the numerical solution converges in the case of infinite small 
elements to the theoretical expected value. In the case of a curvature of the edges, the 
current crowding jmax/jin has for increasing element counts as well as decreasing element size 
for every taken radius a constant value. Due to this the element count used in the 
simulations depends on the element size as well as the used radius in the model. A 
decreasing radius down to the range of an rectangular angle with constant element count 
leads to an increase of  jmax/jin.  

Not in every case optical or scanning electron microscopy pictures are available for a 
determination of the structure shapes after the production process. Due to this for a 
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determination of the optimized radius two dimensional simulations can be compared with 
results from the calculation of the maximum current density out of conformal mapping. The 
maximum current density and details about the homogeneity of the current density and 
resistance behavior at the investigated places can be achieved by the conformal mapping.  

The calculation of the maximum current density is done by the following approach. In 
general for the analytical calculation of the current density distribution at the edge of an 
interconnection, a bent metallization with different width g and h and a radius r can be 
converted by two times conformal mapping into a flat conducting band with width π in the 
Z’ plane. In this flat conducting band a homogenous current density distribution can be 
assumed (figure 2). With the back transformation of this homogenous current density 
distribution into the Z plane the current density distribution along the path A-B-C can be 
achieved and due to this the maximum current density. With the parameters S=g/h as ratio 
of the metallization width and P=r/h as ratio of the radius r to the smaller metallization 
width h and the applied current density jin in the vertical part of the metallization shall 
apply under the condition the P << 1 [Hagedorn]:  
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With equation 10 the current crowding jmax/jin can be determined depending on the 
metallization width and the radius. 

 
Figure 2. Original figure of a two dimensional edge of an metallization in the Z-plane (left). 
Metallization after two times of conformal mapping in the Z’ plane (right). 

In the 2-dimensional case a good correlation between the analytical solution and the 
maximum current density determined by the simulations can be found. In the 3-dimensional 
case the analytical solution is valid under the assumption of a homogenous current density 
distribution in the via, which means that the current density distribution can be mapped on 
the 2-dimensional case.  

The maximum current density depending on the radius for a fixed element count is 
compared to the simulated values. The results are shown in figure 3. For a radius of 0.03µm 
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a good correspondence between simulation and analytical solution is found. For a radius 
above 30nm the simulated values are caused by the increased element size above the 
analytical values. A radius below 30nm has an insufficient mesh and due to this the 
simulated values are beneath the analytical values. To get compliance between simulation 
and analytical solution the mesh has to be refined. This leads to an increase of the 
calculation time and is therefore not useful. 

 
Figure 3. Max. current density depending on the radius for the interconnect/via edge. Analytical 
solution done by conformal mapping and simulation. 

3.3. Mechanical stress and stress gradients 

In the finite element method simulation of the mechanical stress, the calculated unknown 
parameters are the displacement of the nodes. The different forces are calculated by the 
derivation of the displacements. The form function is continuously but not smoothed 
between the elements. Due to this the values at the nodes have to be averaged. Due to this 
and caused by the simplified form function and the limited element expansion the FEM is an 
approximation method. This can lead to failures in the calculation of the dilatations. When 
the results of an inaccurate mesh are derived the inaccuracy concerning a second derivation 
will be intensified. The correlation of the accuracy and mesh refinement is shown in figure 4 
[Eichelseder]. From this knowledge it is clear that the distribution of the dilatation of the 
components S1 to S3 is more accurate than the strain distribution resp. the Von Mises Stress 
(VMS). This fact also implies that a simplified mesh or a coarse mesh can deliver accurate 
results concerning the dilatation. The derivate strain shows accurate values only after a 
refinement. After an additional refinement the gradient of the strain and out of this the 
hydrostatic stress (HS) can be calculated with a good accuracy. The calculation of the mass 
flux divergence due to stress migration includes also a derivation of the stress gradients, 
which will affect the accuracy additional. The accuracy of the finite element mesh has to be 
investigated before the mass flux divergence calculation is done. And the results have to be 
handled with care if the mesh is not adequate tested.  
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Figure 4. Correlation of the accuracy and mesh refinement [Eichelseder]. 

4. Metallization 

4.1. Metallization variation in the 90nm node 

The investigated DD copper structure based on the dimension of the 90nm scaled down to 
the 65nm process technology. The model consists of SiCN as cap layer, Ta/TaN as barrier 
layer and different dielectrics like Silk™, Black Diamond II™ and SiCOH. In the mechanical 
calculations the process temperature using the birth and die algorithm in ANSYS are 
included, caused by the fact that the use of a reference temperature for the stress free state is 
not sufficient [Weide-Zaage 2008]. 

 
Figure 5. Mesh of the investigated structure (left) and mass flux divergence vs metallization height for a 
variation of M1 and M2 (right). 

The mesh of the investigated structure is shown in figure 5 (left). For simplification one via 
with two metal links right and left hand was generated. As one example for this proposal 
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the metallization height here was varied. In the investigated cases for electromigration the 
current flux direction was calculated downstream from the second metallization M2 to the 
first metallization M1 and in the opposite direction upstream. The mass flux divergence of 
the variation is shown in figure 5 (right). It was found that the variation of the first 
metallization M1 and the variation of the second metallization M2 show a big influence on 
the mass flux divergence and out of this on the reliability of the structure. The weakest 
location found here is in and beneath the via. 

 
Figure 6. Maximum hydrostatic Stress for BDII™, Silk und SiCOH. 

For technology nodes in the range of 500nm and below SiO2 or combinations of USG 
(undoped-silicate-glass), PSG (phosphosilicated-glass) or FSG (fluorine-doped-silicate-glass) 
as a customary dielectric (IMD) is used. For products produced in nowadays low-κ 
dielectrics, with a low dielectric constant such as Silk ™, SiCOH, Black Diamond, or MSQ ™ 
II are used. 

Figure 6 shows the maximum hydrostatic stress as a function of the applied current density 
for the different dielectric materials. The greatest mechanical stress occurs at a SiCOH 
dielectric and the lowest at Silk ™. 

4.2. Separated migration mechanism with different via shape 

A second model is based on dimensions of the 65nm technology node with a wide line and 
different via bottom geometries. The model is shown in figure 7 based on SEM pictures from 
the literature [Delsol, Lee]. Tantalum and TaN were chosen as barrier material, SiCN as 
capping material and SiCOH was chosen as dielectric material. The structures were 
investigated under test conditions with an applied current density of 1.5MA/cm² taken from 
[Lin2006a, Lin2006b]. The thermo-mechanical investigations were carried out considering 
the process-induced stress. The process temperatures are given in table 2.  

The stress state in the copper metallization is strongly related to the process temperature of 
the copper. A high process temperature leads to a higher nearly stress free state of the whole 
structure compared to structures with lower temperatures [Matsuyama]. The nearly stress 
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free state determined by investigating of the process induced stress is approx. 200°C. The 
calculation of the stress migration in the structures is described in [Weide-Zaage 2010]. 

 
Figure 7. SEM pictures from [Lin2006, Lin2006(2)] (left) and Finite Element Mesh of the via region of 
the four different bottom geometries (right). 

 

 Young Modul (GPa) Poisson CTE (300K) Process Temperature (°C) 
Cu 125 0.34 16.7 10-6 200 

TaN 185 0.33 6.6 10-6 40 
SiCN 100 0.17 3 10-6 300 

SiCOH 15 0.3 11.6 10-6 350 
Si 98 0.45 2.64 10-6 25 

Table 2. Mechanical properties and process temperatures used in the simulations 

4.2.1. Electromigration test temperature 325°C 

The electromigration behavior of the four models was investigated with current (flux in both 
directions) and an activation energy of 0.9eV. The different via bottom geometries were 
verified by comparison with investigations from literature. The calculated maximum mass 
flux divergences as well as the reciprocal values which are related to the MTF are given in 
table 3. Comparing a Gouging and a Flat via and a Cone Shape and a V-Gouging via the 
Gouging via is more reliable than the Flat via and the Cone shape via more reliable than the 
V-Gouging via. The simulated models show that the Cone Shape via has the best results 
concerning the electromigration behavior. 

 
Via-Shape div EM (div EM)-1 

Gouging Via 1.143 10-3 875 
Flat Via 0.917 10-3 1091 

V-Gouging Via 0.939 10-3 1065 
Cone Via 0.672 10-3 1488 

Table 3. Mass flux divergence and reciprocal mass flux divergence. 
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The failure locations due to the void formation after the electromigration test in the 
literature are found downstream at the bottom of the via and upstream in and over the via 
at the interface metallization cap layer. A schematically overview of the different migration 
effects like electro-, thermo- and stress migration mass flux electron flux upstream and 
downstream and supposed void formation (yellow) is drawn in the via structure shown in 
figure 6. The electromigration mass flux is depending on the current flux direction and 
temperature gradients, the thermomigration mass flux depend on the temperature gradients 
and the stress migration on the stress gradients, which occur at tensile regions also under 
electromigration test conditions. An arbitrary assumed grain distribution is grey colored in 
this graphic. Thermomigration mass flux (blue) in the investigated structures proceeds 
independent of the current flux direction from first as well as the second metallization into 
the via. The electromigration mass flux (green) is at the upper part of the via downstream in 
the same direction and at the via bottom in opposite direction of the temperature gradients 
and thermomigration mass flux. In the upstream case it is vice versa. Due to the process 
induced stress distribution in the metallization, under electromigration test conditions, the 
metallization is mostly compressive with some tensile regions. The stress gradients in the 
tensile regions may lead to a current direction independent migration. High stress migration 
(orange) is found at the bottom and beneath the via above and below the barrier. The stress 
gradients show above the barrier upwards and below the barrier downwards. At the 
interface of the cap layer and the metallization they show down. Only the occurrence of a 
migration pathway leads to voiding. For interface migration the stress gradients have to 
have a component into the direction of the interface. Also the existence of a grain boundary 
pathway supports the voiding. Out of this foot voiding as well as voids in the via itself, both 
indicated in yellow can be explained by this (figure 8). 

 
Figure 8. Schematically electro-, thermo- and stress migration mass flux electron flux upstream and 
downstream and supposed void formation (yellow) in the via structure EM>SM>TM. 

4.2.2. Thermomigration stress temperature 325°C 

The thermomigration (Soret-Effect) was investigated under electromigration test conditions 
of 325°C. The calculation of the thermomigration shows high, values for the mass flux 
divergence. With temperature gradients of 50K/µm the gradients are high but not high 
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enough to induce thermomigration. Gradients of 100K/µm are supposed to be an 
acceleration factor for the thermomigration. In figure 9 the mass flux divergence distribution 
due to thermomigration is shown. High values in the Gouging model are found at the via 
bottom in the via and at the corner of the metallization, barrier- and cap-layer. For the Cone 
Shape via high values are found only at the corner of the corner the metallization, barrier- 
and cap-layer. The activation energy for the thermomigration calculation is supposed to be 
too small and should be >1.2eV. Measurements of thermomigration activation energies of 
copper in copper are not known until now to verify this. 

 
Figure 9. Thermomigration mass flux divergence distribution for the Gouging and the Cone Shape 
model. 

5. µ-Bump, CuSn-pillar and TSV 

5.1. µ-Bump in comparison with BGA-PoP 

A variation of the applied current in a Package-on-Package (PoP) bumps [Meinshausen 2010 
(a)] and µ-bump [Meinshausen 2011] was carried out and the mass flux divergence 
distribution was determined. The bumps in the FE model of the PoP device with one bump 
chain consist of SAC305 (SnAgCu). For the under-bump metallization (UBM) and the 
surface finishes 6µm thick Ni layers were used. As mold compound (MC) around the upper 
contact surfaces "Stycast 1090" was chosen. The simulations were carried out with 
anisotropic and temperature depending material parameters. In the FR-4 substrates five 
layers of Cu traces and Cu vias between the top and the bottom package are placed to 
connect the top and the bottom bumps. The height of the upper, the middle and the lower 
copper layers is 20µm, 18µm and 36µm. The width of all layers is 250µm. The model of a µ-
bump between two ICs is shown in figure 10 (left). The dimensions of the µ-bumps are 
similar to the test structures used in [Labie]. The diameter of the µ- bump is 25µm and the 
height is 10µm. Over and under the µ-bump a 100µm silicon layer resp. a 50µm thick silicon 
layer is representing the ICs of a CoC (Chip-on-Chip) structure. The ICs are covered with a 
1µm thick Si3N4 passivation layer. The copper traces at the upper and the lower contact 
surface have a height of 0.5µm and a width of 32µm. The pitch is 40µm. 
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Figure 10. Model of the µ-bump (left). The different materials are indicated by colors. The mass flux 
divergence vs. the applied current for SAC bump and µ-bump (right). 

In figure 10 (right) the mass flux divergence depending on the applied current for the SAC 
PoP bump and the µ-bump is shown. Under the same applied current the mass flux 
divergence of µ-bumps is compared to PoP bumps about four orders of magnitude higher. 
Due to this fact the reliability of the µ-bump has a high electromigration risk. The weakest 
point of the µ-bump was found at the top of the bump due to current crowding combined 
with high temperature gradients. 

 
Figure 11. Temperature distribution in a BGA PoP Package with ICs (left) and maximum temperature 
in the bumps vs  applied IC’s power loss (right). 

[Meinshausen 2010(b), Meinshausen 2012] investigated in previous simulations the heat flux 
density of IC stacks with a constant surface load. The heat loss of the ICs is one reason for 
the existence of an inhomogeneous temperature distribution in packages. An applied power 
of 2-8W for all ICs in the IC stack was investigated as boundary condition for the 
simulations. The temperature distribution in the package for a power loss of 8W is shown in 
figure 11, left side. The maximum temperature occurs in the IC stack. The bump 
temperature is much lower (figure11, right). This leads to a strong inhomogeneous 
temperature distribution. On the other hand the temperature gradients in the bumps are not 
as high compared to the EM simulation. Due to this in this investigated case 
thermomigration will not occur. 
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5.2. TSV with µ-bump 

Through silicon vias (TSV) have a wide range of applications in the modern packaging. 
Three different kinds of TSV can be identified which are common under the topic of 3D IC 
packaging, 3D IC integration and 3D Si integration. Due to this the processing as well as the 
size of the TSV is completely different. The application can be divided into three topics. 

a. Package on Package stacking with TSV as connections between them 
b. Chip to Chip, Chip to Wafer or Wafer to Wafer stacking with SiO2 to Sio2 and Cu to Cu 

bonding. 
c. Wafer to Wafer stacking; Memory chip stacking TSV are used as connection between 

the chips; active or passive interposer. 

In the case of the 3D IC integration the TSVs are necessary. Due to the fact that the data 
width is limited, the use of TSV with small sizes in the range of 5-10µm with a pitch in the 
range of 20-40µm a much wider I/O width is possible. The TSV shortens the way of the 
connections compared to the common wire bonding. Using the wire bonding the chip size 
has to be increased and due to this the costs increase. TSV as solution will solve this problem 
in future. For future 3D integration Cu-TSV as well as tungsten W-TSV will be used 
[Murugesan] caused by the fact that W is a capable material for sub µ-vias but not usable for 
power and ground applications due to its high specific resistance. Therefore Cu with a Ta 
barrier will be used.  

 
Figure 12. Schematic picture of a TSV and µ-bump (left) and FE-Model (right). 

As an example in figure 12 (right) the mesh of a TSV with a SAC pillar is shown. The right 
side of figure 12 shows schematically a TSV with a µ-bump [Leduc]. The geometrical data 
for the simulations are taken from [Kitada, Lo]. The diameter of the TSV was set to 9µm and 
the height was set to 80µm. The copper barrier in the TSV consists of SiN and TiN. The 
thickness of the interconnections is 7µm. The passivation consists of SiN. 
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On top of the TSV high VMS was found caused by the fact that the copper in the TSV is 
under pressure and the material is pressed out of the TSV. Concerning the EM high mass 
fluxes were found at the bottom of the TSV to the metal trace. At this position also high 
thermal mass flux occurs. High hydrostatic stress occurs at the bottom of the TSV to the 
metal trace. The stress increases about 10% for an increase of the applied current from 0.1 to 
0.3A. 

5.3. CuSn-pillar 

For a simplified assembly, a smaller pitch between the bumps and a low interconnect 
inductance CuSn-pillars can be used. Copper pillars are copper bumps with a thin layer of 
Sn on the top. These layer thicknesses can vary [Huffman, Syed]. The CuSn-pillars can be 
formed under pressure and a temperature load. This leads to the formation of Cu3Sn and 
Cu6Sn5 phases. Due to this CuSn pillars with different Sn thickness and location in the bump 
were investigated. The bumps had a diameter of 24µm and a complete high of 45µm. Above 
the bumps a Cu trace and below the bumps a TSV (figure 12) were placed in the model. The 
applied current was set to 175 mA, the substrate temperature was varied from -50 to 150°C 
and the stress free temperature was set to 135°C. In figure 13 a part of the mesh and the 
temperature gradient distribution in the different bumps is shown. 

 

 
 

Figure 13. Mesh of the CuSn Pillar with Cu in magenta and Sn in yellow (above) and temperature 
gradient distribution for the different models (below). 
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The homogenous temperature distribution the bumps can be achieved by a placement of the 
Sn in the middle (model A). In the case of model B-C high temperature gradients occur 
above the Sn near the copper trace. At this position also current crowding occurs. Both can 
lead to a weak link at this position. Depending on the current flow direction the flux will be 
increased or decreased. In figure 14 the hydrostatic stress depending of the substrate 
temperature is shown for model A the highest stress occurs for temperatures about -50°C 
near the reference temperature of the stress free state the stress is the lowest. The processing 
temperatures should be included in the model. 

 
 
 
 

 HS [MPa] Tmax [K] Div Jmax [a.u.] 
B 174 396,86 0,486e12 
C 175 396,54 0,459e12 
D 172 397,02 0,512e12 

Table 4. Hydrostatic Stress, Maximum Temperature and Maximum Mass flux Divergence. 

 
 

 
 

 
 
Figure 14. Hydrostatic stress depending of the substrate temperature (model A). 
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6. Conclusion 

The finite element analysis of metallization structures or packages and bumps provide an 
insight into local temperatures, current density and stress gradient distributions with the 
possibility of mass flux divergence calculation. A prediction of weak links in the structures 
helps to increase the reliability during the design phase. Also the costs will be decreased and 
redesigns avoided. 

In future phase separation in the CuSn bumps by IMC growth as well as the influence  
of special placed grain boundaries and concentration gradients should be included  
in the model. The process induced stress should be also included in the package  
modeling. 
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